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A review and tutorial of the fundamental ideas and methods of 
joint time-frequency distributions is presented. The objective of 
the field is to describe how the spectral content of a signal is 
changing in time, and to develop the physical and mathematical 
ideas needed to understand what a time-varying spectrum is. The 
basic goal is to devise a distribution that represents the energy or 
intensity of a signal simultaneously in time and frequency. 
Although the basic notions have been developing steadily over the 
last 40 years, there have recently been significant advances. This 
review is presented to be understandable to the nonspecialist with 
emphasis on the diversity of concepts and motivations that have 
gone into the formation of the field. 

I. INTRODUCTION 

The power of standard Fourier analysis i s  that it allows 
the decomposition of a signal into individual frequency 
components and establishes the relative intensity of each 
component. The energy spectrum does not, however, tell 
us when those frequencies occurred. During a dramatic 
sunset, for example, it is clear that the composition of the 
light reaching us isverydifferentthan what it isduring most 
of the day. If we Fourier analyze the light from sunrise to 
sunset, the energy density spectrum would not tell us that 
the spectral composition was significantly different in the 
last 5 minutes. In  this situation, where the changes are rel- 
atively slow, we may Fourier analyze 5-minute samples of 
the signal and get a pretty good idea of how the spectrum 
during sunset differed from a 5-minute strip during noon. 
This may be refined by sliding the 5-minute intervals along 
time, that is, by taking the spectrum with a 5-minute time 
window at each instant in time and getting an energy spec- 
trum as acontinuous function of time. As long as the 5-min- 
Ute intervals themselves do not contain rapid changes, this 
will give an excellent idea of how the spectral composition 
of the light has changed during the course of the day. If 
significant changes occurred considerably faster than over 
5 minutes, we may shorten the time window appropriately. 
This is the basic idea of the short-time Fourier transform, 
or spectrogram, which i s  currently the standard method for 
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the study of time-varying signals. However, there exist nat- 
ural and man-made signals whose spectral content is 
changing so rapidly that finding an appropriate short-time 
window i s  problematic since there may not be any time 
interval for which the signal i s  more or less stationary. Also, 
decreasing the time window so that one may locate events 
in time reduces the frequency resolution. Hence there i s  
an inherent tradeoff between time and frequency resolu- 
tion. Perhaps the prime example of signals whose fre- 
quency content i s  changing rapidly and in a complex man- 
ner is human speech. Indeed it was the motivation to 
analyze speech that led to  the invention of the sound spec- 
trogram [113], [I601 during the 1940s and which, along with 
subsequent developments, became a standard and pow- 
erful tool for the analysis of nonstationary signals [5], [6], 
[MI, [751, [1171, U121, F261, [1501, [1511, [1581,[1631, [1641, [1741. 
Its possible shortcomings not withstanding, the short-time 
Fourier transform and i ts  variations remain the prime meth- 
ods for the analysis of signals whose spectral content i s  
varying. 

Starting with the classical works of Gabor [BO], Ville [194], 
and Page [152], there has been an alternative development 
for the study of time-varying spectra. Although it i s  now 
fashionable to  say that the motivation for this approach i s  
to  improve upon the spectrogram, it i s  historically clear that 
the main motivation was for a fundamental analysis and a 
clarification of the physical and mathematical ideas needed 
to understand what a time-varying spectrum is. The basic 
idea is to  devise a joint function of time and frequency, a 
distribution, that will describe the energy density or inten- 
sityof a signal simultaneously in time and frequency. In the 
ideal case such a joint distribution would be used and 
manipulated in the same manner as any density function 
of more than one variable. For example, if we had a joint 
density for the height and weight of humans, we could 
obtain the distribution of height by integrating out weight. 
Wecould obtain the fraction of peopleweighing more than 
150 Ib but less than 160 Ib with heights between 5 and 6 
ft. Similarly, we could obtain the distribution of weight at 
a particular height, the correlation between height and 
weight, and so on. The motivation for devising a joint time- 
frequencydistribution i s  to  be able to use it and manipulate 
it in the same way. If we had such a distribution, we could 
ask what fraction of the energy is  in a certain frequency and 
time range, we could calculate the distribution of fre- 
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quency at a particular time, we could calculate the global 
and local moments of the distribution such as the mean 
frequency and its local spread, and so on. In addition, if we 
did have a method of relating a joint time-frequency dis- 
tribution to a signal, it would be a powerful tool for the con- 
struction of signals with desirable properties. This would 
be done by first constructing a joint time-frequency func- 
tion with the desired attributes and then obtaining the sig- 
nal that produces that distribution. That is, we could 
synthesize signals having desirable time-frequency char- 
acteristics. Of course, time-frequency analysis has unique 
features, such astheuncertaintyprinciple,which add tothe 
richness and challenge of the field. 

From standard Fourier analysis, recall that the instanta- 
neous energy of a signal s ( t )  i s  the absolute value of the sig- 
nal squared, 

(s(t)I2 = intensity per unit time at time t 

or 

(s(t)12At = fractional energy in time interval A t  at time t. 

(1.1) 

The intensity per unit frequency,’ the energy density spec- 
trum, i s  the absolutevalue of the Fourier transform squared, 

( S ( O ) ( ~  = intensity per unit frequency at w 

or 
(s(o)(’Aw = fractional energy in frequency 

interval A w  at frequency w 

where 

S(W) = - s(t)e-’”‘ dt. J2.A I 6  
We have chosen the normalization such that 

(s(t)I2 d t  = 6 lS(w)I2 dw = total energy = 1 

where,for convenience,wewill alwaystakethetotal energy 
to be equal to I.’The fundamental goal is to devise a joint 
function of time and frequencywhich represents the energy 
or intensity per unit time per unit frequency. For a joint dis- 
tribution P(t,  w )  we have 

P( t ,  U) = intensity at time t and frequency w 

or 

P(t,  w ) A t  Aw = fractional energy in time-frequency 

cell At  Aw at t, W .  

Ideally the summing up of the energy distribution for all 
frequencies at a particular time would give the instanta- 
neous energy, and the summing up over all times at a par- 
ticular frequency would give the energy density spectrum, 6 P( t ,  W )  dw  = (s(t)lZ (1.5) 

1 P(t,  W )  dt = (S(4I2. (1.6) 

’We use angular frequency. All integrals go from --CO to +m 

’Signals that cannot be normalized may be handled as limiting 
unless otherwise stated. 

cases of normalized ones or by using generalized functions. 

The total energy€, expressed in terms of thedistribution, 
i s  given by 

E = j f ( t ,  U )  dU dt (1.7) 

and will be equal to the total energyof the signal i f  the mar- 
ginals are satisfied. However, we note that it i s  possible for 
a distribution to give the correct value for the total energy 
without satisfying the marginals. 

Do there exist joint time-frequency distributions that 
would satisfy our intuitive ideas of atime-varying spectrum? 
Can their interpretation be as true densities or distribu- 
tions? How can such functions be constructed? Do they 
really represent the correlations between time and fre- 
quency? What reasonable conditions can be imposed to 
obtain such functions? The hope is  that they do exist, but 
if they do not in the full sense of true densities, what i s  the 
best we can do? Is there one distribution that i s  the best, 
or are different distributions to be used in different situ- 
ations? Are there inherent limitations to a joint time-fre- 
quency distribution? This is the scope of time-frequency 
distribution theory. 

Scope of Review, Notation, and Terminology: The basic 
ideas and methods that have been developed are readily 
understood by the uninitiated and do not require any spe- 
cialized mathematics. We shall stress the fundamental 
ideas, motivations, and unresolved issues. Hopefully our 
emphasis on the fundamental thinking that has gone into 
the development of the field will also be of interest to the 
expert. 

We confine our discussion to distributions in the spirit 
of those proposed by Wigner, Ville, Page, Rihaczek, and 
others and consider only deterministic signals. There are 
other qualitatively different approaches for joint time-fre- 
quency analysis which are very powerful but will not be dis- 
cussed here. Of particular note i s  Priestley’s theory of evo- 
lutionary spectra 11621 and we point out that his discussions 
of the basic concepts relating to time-varying spectra are 
among the most profound. Also, we will not consider the 
Gabor logon approach, although it is related to the spec- 
trogram discussed in Section VI. 

As usual, when considering many special cases and sit- 
uations, one may quickly become embroiled in a morass 
of subscripts and superscripts. We have chosen to keep the 
notation simple and, if no confusion arises, wedifferentiate 
between cases and situations by context rather than by 
notation. 

Some of the terminology may be unfamiliar or puzzling 
to some readers. Many words, like distribution in the prob- 
ability sense, are used because of historical reasons. These 
distributions first arose in quantum mechanics where the 
words ”probability density” or “distribution” are applied 
properly. For deterministic signals where no probabilistic 
considerations enter, the reader should think of distribu- 
tions as “intensities” or “densities” in the common usage 
of the words, or simply as how the energy i s  “distributed” 
in the time-frequency cells. Of course many probability 
concepts apply to intensities, such as averages and spreads. 
When we deal with stochastic signals, probability concepts 
do properly enter. As we will see, many of the known dis- 
tributions may become negative or even complex. Hence 
they are sometimes called quasi or pseudo distributions. 
Also from probability theory, the word ”marginal” is used 
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to indicate the individual distribution. The marginals are 
derived from the joint distribution by integrating out the 
other variables. Hence we wil l say that l s ( t ) I2  and S(w)I2 are 
the marginals of P(t, U), as per Eqs. (1.5) and (1.6). 

II. BRIEF HISTORICAL PERSPECTIVE AND EXAMPLES 

Although we will discuss the particular distributions in 
detail, it isofvaluetogiveashort historical perspective here. 
The two original papers that addressed the question of a 
joint distribution function in  the sense considered here are 
those of Gabor [80] and Ville [194]. They were guided by a 
similar development in  quantum mechanics, where there 
i s  a partial mathematical resemblance to time-frequency 
analysis. We discuss this resemblance later, but we empha- 
size here that the physical interpretations are drastically 
different and the analogy is only formal. Gabor developed 
a mathematical method closely connected to  so-called 
coherent states in quantum mechanics. In  the same paper 
Gabor introduced the important concept of the analytic sig- 
nal. Ville derived a distribution that Wigner [I991 gave in 
1932 to  study quantum statistical mechanics. At the same 
time as Ville, Moyal [I431 used an identical derivation in the 
quantum mechanical context. Although we use the word 
"derivation," we emphasize that there i s  an ambiguity in  
the method of Ville and Moyal, and many later authors used 
the same derivation to  obtain other distributions. The Wig- 
ner-Ville distribution i s  

It satisfies the marginals, but we do not show that now. We 
shall see later that by simple inspection the properties of 
a distribution can readily be determined. A year after Wig- 
ner, Kirkwood [I071 came up with another distribution and 
argued that it i s  simpler to use than the Wigner distribution 
for certain problems. The distribution i s  simply 

(2.2) 

This distribution and its variations have been derived and 
studied in many ways and independently introduced in sig- 
nal analysis. A particularly innovative derivation based on 
physical considerations was given by Rihaczek [167]. Levin 
[I251 derived it by modifying the considerations that led to  
the Page [I521 distribution. Margenau and Hil l [I331 derived 
it by the Ville and Moyal methods. Equation (2.2) i s  complex 
and i s  sometimes called the complex energy spectrum. Its 
real part is also a distribution and satisfies the marginals. 

In 1952 Page [I521 developed the concept of the running 
spectrum. He obtained a new distribution from simple con- 
ceptual considerations and coined the phrase "instanta- 
neous power spectra." The Page distribution i s  

It was pointed out by Turner [I901 and Levin [I251 that the 
Page procedure can be used to obtain other distributions. 

A comprehensive and far-reaching study was done by 
Mark [I381 in 1970, where many ideas commonly used today 
were developed. He pinpointed the difficulty of the spu- 
rious values in the Wigner distribution, introduced the 

"physical" spectrum, which i s  basically the spectrogram, 
and showed i ts  relation to  the Wigner distribution. Fun- 
damental considerations regarding time-frequency distri- 
butions and nonstationary processes were given by Blanc- 
Lapierre and Picinbono [24], Loynes [128], and Lacoume and 
Kofman [121]. 

One of the main stumbling blocks in  developing a con- 
sistent theory is the fact that the behavior of these few dis- 
tributions i s  dramatically different and each has peculiar 
properties. However, each does satisfy the marginals, has 
other desirable properties, and presumably i s  a good can- 
didate for the time-varying spectrum. Furthermore each has 
been derived from seemingly plausible ideas. It was unclear 
how many more existed and whether the peculiarities were 
general features or individual ones. It was subsequently 
realized [58] that an infinite number can be readily gen- 
erated from 

where +(e, 7) is an arbitrary function called the kernel3 by 
Claasen and Mecklenbrauker [56]. By choosing different 
kernels, different distributions are obtained at will. For 
example the Wigner, Rihaczek, and Page distributions are 
obtained by taking$@, 7) = 1, and e/01r1'2, respectively. 
Having a simple method to  generate all distributions has 
the advantage of allowing one to  prove general results and 
to  studywhat aspects of a particular distribution are unique 
or common to all. Equally important is the idea that by plac- 
ing constraints on the kernel one obtains a subset of the 
distributions which have a particular property [58]. That is, 
the properties of thedistribution aredetermined bythe cor- 
responding kernel. 

There has been agreat surgeof activity in the past 10 years 
or so and the initial impetus came from the work of Claasen 
and Mecklenbrauker [54]-[56], janse and Kaizer [97l, Boa- 
shash (aka Bouachache) [35], and others. The importance 
of their initial contributions is that they developed ideas 
uniquely suited to the time-frequency situation and dem- 
onstrated useful methods for implementation. Moreover, 
they were innovative in  using the similarities and differ- 
ences with quantum mechanics. In an important set of 
papers, Claasen and Mecklenbrauker [54]-[56] developed 
a comprehensive approach and originated many new ideas 
and procedures for the study of joint distributions. Boa- 
shash [35] was perhaps the first to  utilize them for real prob- 
lems and developed a number of new methods. In  partic- 
ular he realized that even though a distribution may not 
behave properly in all respects or interpretations, it could 
st i l l  be used if a particular property such as instantaneous 
frequency i s  well described. He initially applied them to 
problems in  geophysical exploration. Escudie [71], [77] and 
coworkers transcribed directly some of the early quantum 

31n general the kernel may depend explicitly on time and fre- 
quency and in addition may also be a functional of the signal. To 
avoid notational complexity we will use $48, T), and the possible 
dependence on other variables will be clear form the context. As 
we will see in Section IV, the time- and frequency-shift invariant 
distributions are those for which the kernel is independent of time 
and frequency. 
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mechanical results, particularly the work on the general 
class of distributions [58], [132], into signal analysis lan- 
guage. The work by Janse and Kaizer [97] was remarkable 
in  i t s  scope and introduction of new methodologies. They 
developed innovative theoretical and practical techniques 
for the use of these distributions. 

Many divergent attitudes toward the meaning, interpre- 
tation, and use of these distributions have arisen over the 
years, ranging from the attempt to  describe a time-varying 
spectrum to merely using them as carrying the information 
of a signal in a convenient way. The divergent viewpoints 
and interests have led to a better understanding and imple- 
mentation. We will discuss some of the common attitudes 
and unresolved issues in  the conclusion. The subject i s  
evolving rapidly and most of the issues are open. 

Preliminary Illustrative Examples: Before proceeding we 
present a simple example of the above distributions so that 
the reader may get a better feeling for the variety and dif- 
ficulties. We consider the signal illustrated in Fig. l(a). Ini- 
tially the sine wave has a frequency w1 in the interval (0, t,), 
then it is shut off in the interval (tl, t2) and turned on again 
in the interval (t2, t3) with a frequency w2. This simple signal 
i s  an idealization of common situations that we hope these 
distributions wil l handle effectively. The signal i s  highly 
nonstationary, has intermediate periods of silence com- 
mon in acoustic signals, and has sudden onsets. Everyone 
has a sense of what the distribution should be. We expect 
the distribution to  show a peak at w1 in the interval (0, tl) 
and another peak at w2 for the interval (f2, t3), and of course 
to be zero in the interval (tl, t2). Fig. 1 illustrates the dis- 
tributions mentioned thus far and we see that they all imply 
intensities, that is, nonzero values, at places that are not 
expected. The Wigner distribution i s  not zero in the range 
(tl, t2) although the signal is. This i s  a fundamental property 
which we discuss later. The Rihaczek distribution has non- 
zero values at w2 at time (tl, t2), although we would expect 
zero intensity at that frequency for those times. Similar 
statements hold for the interval (t2, t3) at frequency U,. The 
distribution i s  such that all values of the spectrum are 
reflected at each time. The Page distribution is similar to 
that of Rihaczek, but it reflects only those frequencies that 

have already occurred. We also note that while the Wigner 
distribution peaks in  the middle of each portion of the sig- 
nal, the Rihaczek distribution i s  flat and the Page distri- 
bution gradually increases as more of the signal at that fre- 
quency comes through in time. 

We emphasize that all three distributions satisfy the 
instantaneous energy and spectral energy exactly. Although 
very different in  appearance, they are equivalent in the 
sensethateachonecan beobtainedfrom theother uniquely 
and contains the same amount of information. They are very 
different in their energy concentration, but nonetheless all 
three have been used with considerable profit. We note 
that these are just three possibilities out of an infinite num- 
ber of choices, all with vastly different behavior. 

111. THE DISTRIBUTIONS AND METHODS FOR OBTAINING 

THEM 

One of the remarkable facts regarding time-frequency 
distributions i s  that so many plausible derivations and 
approaches have been suggested, yet the behavior of each 
distribution i s  dramatically different. It i s  therefore impor- 
tant to understand the ideas and arguments that have been 
given, as variations and insights of them will undoubtedly 
lead the way to  further development. We wil l not present 
these approaches in historical order, but rather in a 
sequence that logically develops the ideas and techniques. 
However, the different sections may be read indepen- 
dently. With the benefit of hindsight we have streamlined 
some of the original arguments. 

A. Page Distribution and Variations 

Page [I521 argues that as the signal i s  evolving, our knowl- 
edge of it consists of the signal up to  the current time tand 
we have no information about the future part. Conceptually 
we may consider a new signal s,(t’), 

s(t’ ) ,  t’ I t 
s,(t’) = [o, t’ > t (3.1) 

U1 a 2  a1 

FREQUENCY 

(a) (b) (C) 
Fig. 1. (a) Wigner, (b) Rihaczek, and (c) Page distributions for the signal illustrated at left. 
The signal is turned on at time zero with constant frequency U, and turned off at time t,, 
turnedonagainattime t,withfrequencyw,and turned off attime t,.All threedistributions 
display energy density where one does not expect any. The positive parts of the distri- 
butions are plotted. For the Rihaczek distribution we have plotted the real part, which is 
also a distribution. 
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where t' i s  the running time and t i s  the present instant. The 
Fourier transform of s,(t') i s  

1 "  
JT;; -" 
1 '  

s;(w) = - s,(t"e+" dt' 

(3.2) 

which i s  called the running spectrum. The (-) notation i s  
to signify that we have observed the signal from --oo. In 
analogy with Eq. (1.6) we expect the energy observed per 
unit frequency up to time t to be 

- - I__ s(t')e-'"'' dt' 

I' P-(t' ,  0) dt' = (S;(w))2. (3.3) 

This equation can be used to determine P-(t, w), since dif- 
ferentiation with respect to t yields 

-m 

(3.4) 

which i s  the Page distribution. It can be obtained from the 
general class of distributions, Eq. (2.4), by taking 

a -  P--(t, w)  = - IS, (w)(2 
at 

4(e, 7)  = e/+1'*. (3.5) 

Substituting Eq. (3.2) into (3.4) and carrying out the differ- 
entiation, we also have 

which i s  a convenient form for its calculation. 
As for the general behavior of the Page distribution, we 

note that the longer a particular frequency i s  observed, the 
larger the intensity i s  at that frequency. This i s  illustrated 
in Fig.2(a),whereweplotthe Pagedistributionforthefinite- 
duration signal, 

s( t )  = e/"O', 0 s t 5 T. (3.7) 

The distribution i s  

I - sinc (w - wo)t, 0 5 t s T 

[it otherwise. 
(3.8) 

As time increases, thedistribution becomes moreand more 
peaked at U,,. In Fig. 2(b) we have also plotted the Wigner 
distribution for the same signal for later discussion. We 
remark here that up to t = T/2 the distributions are iden- 
tical, but after that, their behavior is quite different. The 
Wigner distribution always goes to zero at the beginning 

P-U, 0) = 

and end of a finite-duration signal. That i s  not the case with 
the Page distribution. 

It was subsequently realized by Turner [I901 that Page's 
definition and procedure have two arbitrary aspects. First 
we can add to the Page distribution the function p ( t ,  U), 

which Turner called the complementary function, and 
obtain a new distribution, 

The marginals are s t i l l  satisfied if the complementary func- 
tion satisfies 

p ( t ,  U )  d t  = 0 and p(t ,  w )  dw = 0. (3.10) 

Turner also pointed out that taking the interval from --03 

to t is not necessary; other intervals can be taken, each pro- 
ducing a different distribution function related to each 
other by a complementary function satisfying the above 
conditions. 

Levin [I251 defined the future running transform by 

s 

(3.11) 

and using the same argument, we have 

Differentiation with respect to time leads to 

a 
P'U, w)  = -- at Js:(w))2 

1 
= 2 Re - s* ( t )  S:(w)ei"'. (3.13) 6 

He also argued that we should treat past and future on the 
same footing, by defining the instantaneous energy spec- 
trum as the average of the two, 

P(t,  w )  = 1 [ P  + ( t ,  w )  + P-( t ,  4 1  (3.14) 
2 

(3.16) 

This distribution is the real part of the distribution given by 
Eq. (2.2), which corresponds to the kernel 4(0 ,~ )  = cos iO7. 

- -- ' Re s* ( t )  e'"'S*(w). J% 

(a) 
Fig. 2. (a) Page and (b) Wigner distributions for the finite-duration signal s ( t )  = eluor, 0 5 
t s T. As time increases, the Page distribution continues to increase at wo. The Wigner 
distribution increases until T / 2  and then decreases because the Wigner distribution always 
goes to zero at the beginning and end of a finite-duration signal. 
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Because of the symmetry between time and frequency 
we can also define the running signal transform by 

I a n + m  
In/" ae a7m ( tnwm)  = - w e ,  7 )  

1 P W  

. (3.28) 

sJ(t) = I 3 S(w')e/"" d w '  (3.17) & -- 

which yields the distribution 

1 
= 2 Re - sJ(t) S(w)e-i"'. (3.18) 6 

Similarly, 

If Eqs. (3.17) and (3.18) are added together, we again obtain 
Eq. (3.16). 

Filterbank Method: Grace [83] has given a interesting 
derivation of the Page distribution. The signal i s  passed 
through a bank of bandpass filters and the envelope of the 
output i s  calculated. The squared envelope i s  given by 

where h(t)e/"' is the impulse response of one filter. By 
choosing the impulse response h(t) to be 1 up to  time tand 
zero afterward, we obtain the frequency density, the right- 
hand side of Eq. (3.3), and the Page distribution follows as 
before. 

B. Complex Energy Spectrum 

As already noted, the Rihaczek distribution was used and 
derived in many ways, but Rihaczek [I671 and Ackroyd [2], 
[3] derived it from physical considerations. Consider a time- 
dependent voltage V(t) going through a pure reactance 
whoseadmittancefunction iszero for all frequenciesexcept 
for a narrow band around w, where it is 1 .  If we decompose 
the voltage into its frequency components, 

(3.21) 

the voltage at each frequency i s  (I/&)Vwe/"'. The current 
at that frequency i s  

1 iw(t) = - V,e'"' 6 (3.22) 

and the total current in the frequency range w to  w + Am 
is 

w + A w  

i,(t) d w  = - s Vwe/"' dw. (3.23) 
J G w  

i ( t )  = 

The complex power at time t i s  V(t) i * ( t ) ,  and hence the 
energy in  the time interval A t  is 

E ( t ,  w) = 

1 f ' A f  w + A w  -~ - sf ju V:V(t)e-/"' d w  dt. (3.24) 

We now obtain the energy density w at t by going to the 
limit, 

V~V(f)e-'"'. (3.25) e(t, w )  = lim - = - 
A ~ . A ~ - o  At Am & 

u t ,  w )  1 

Associating a signal s(t) with the voltage V(t) [ in which case 
V, i s  S(o)], we have the distribution 

1 
(3.26) e(t, W )  = ~ s ( t )  S*(w)e-'"' J% 

which i s  Eq. (2.2). 

C. Ville-Moyal Method and Generalization 

The Ville [I941 approach is conceptually different and 
relies on traditional methods for constructing distributions 
from characteristic functions, although with a new twist. 
Ville used the method to derive the Wigner distribution but 
did not notice that there was an ambiguity in  his presen- 
tation and that other distributions can be derived in  the 
same way. As previously mentioned, Moyal [I431 used the 
same approach. 

Suppose we have a distribution P(t, w )  of two variables t 
and w. Then the characteristic function is defined as the 
expectation value of that is, 

M(0, 7) = (e/st+/'W) = [ [ e'e'+/rwP(f, w )  dt dw. (3.27) 

It has certain manipulative advantages over the distribu- 
tion. For example, the joint moments can be calculated by 
differentiation, 

By expanding the exponential in  Eq. (3.27) it is straightfor- 
ward to  show 

which shows how the characteristic function can be con- 
structed from the joint moments. In  general the charac- 
teristic function i s  complex. However, not every complex 
function isacharacteristicfunction since it must bethe Fou- 
rier transform of some density. We point out that there are 
cases where the joint moments do not determine a unique 
distribution. 

The distribution function may be obtained from M(0, 7) 
by Fourier inversion, 

I s  it possible to find the characteristic function for the sit- 
uation we are considering and hence obtain the distribu- 
tion? Clearly, it seems, we must have the distribution to start 
with. Recall, however, that the characteristic function i s  an 
average. Ville devised the following method for the cal- 
culation of averages, a method that i s  rooted in the quan- 
tum mechanical method of associating operators with ordi- 
nary variables. If we have a function g,(t) of time only, then 
its average value can be calculated in one of two ways, 
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directly using the signal or by way of the spectrum, that is, 

(gdt)) = j Is(t)I2gl(t) dt 

This i s  easy to show by assuming that the function gl(t) can 
be expanded in a power series. Therefore in the frequency 
domain time is "represented" by the operator jdldw. Sim- 
ilarlyfor afunction of frequencyonly,g,(w), its averagevalue 
can be calculated by 

(g2(w)> = 1 1S(w)12 g2(4 dw 

= s * ( t )  g2( - j  :) s ( t )  dt. (3.32) 

and hence frequency becomes the operator -jdldt in the 
time domain. 

Therefore we can associate time and frequency with the 
operators 3 and W so that 

W - t  - j -  in the time domain 
dt  3 + t  

3 ' 1 %  W + w  in the frequency domain. d 

Butwhat i fwe haveafunctiong(t,w)of timeandfrequency? 
How do we then calculate its average value? Ville proposed 
that we do it the same way, namely, by using 

(g(t ,  U ) )  = s * ( t )  G(t ,  W )  s ( t )  dt (3.33) 

in the time domain and 

(g ( t ,  U ) )  = 1 S * W  G(3, U )  S(w) dw 

s 

(3.34) 

in the frequency domain, where G(3, W )  i s  the operator 
"associated" with or "corresponding" to g(t, w). Since the 
characteristic function i s  an expectation value, we can use 
Eq. (3.33) to obtain it, and in particular, 

M(0, 7 )  = (eW+/rW) -+ S*(t)e/83+/rW s( t )  dt. (3.35) 

We now proceed to evaluate this expression. Because the 
quantities are noncommuting operators, 

3 W - W 3 = j  (3.36) 

one has to be careful in manipulating them. To break up 
the exponent, one can use a special case of the Baker-Haus- 
dorf [201] theorem 

e e  e e . (3.37) efXl +/"W = e-/Or/z /rW 103 = e/OT/2 /O3 / A V  

The operator elTw is the translation operator, 

e/'"s(t) = eT'"''s(t) = s ( t  + 7)  (3.38) 

and substituting into Eq. (3.35) we have 

M(0, 7 )  = s*( t )  e/er/2e/8's(t + 7)  dt. (3.39) S 
Making the change of variables U = t + i7, du = dt, we 
obtain 

M(0, 7 )  = s S * ( U  - 7 )  e/eus ( U  + 7) du. (3.40) 

Inverting as per Eq .  (3.30), we obtain the distribution 

e-/" - I T w  d0 d7 du. 

The 0 integration gives a delta function, and hence 

(3.41) 

(3.42) 

which i s  the Wigner distribution. 
It was subsequently pointed out [58], [I321 that there i s  

an inherent ambiguity in the derivation because the char- 
acteristic functions written in terms of the classical vari- 
ables allow many operator correspondences. The method 
was generalized by devising a simple method to generate 
correspondences and distributions [58]. Instead of 

, / ~ t + p  ~ ,/ea+/Tw (3.44) 

e / @ r + ~ r w  --t e/83e/rW (3.45) 

which is called the Weyl correspondence, we could take 

or 

e/8'+l'w --* e/'we/e3 (3.46) 

which are called normal ordered correspondences. The 
symmetrical correspondence is the average of the two, 

,/e'+lrw + t(e/03eJrw + e/Twe/03,). (3.47) 

There are many other expressions which reduce to the left- 
hand side when operators 3 and W are not considered 
operators but ordinary functions. The nonunique proce- 
dure of going from a classical function to an operator func- 
tion i s  called a correspondence rule, and there are an 
infinite number of such rules [58]. Each different corre- 
spondence rule will give a different characteristic function, 
which in turn will give a different distribution. If we use the 
correspondence given by Eq. (3.46), we obtain 

= s s* ( t )  e/sc'+"s(t + 7)  dt 

= j s * ( t  - 7)  e%(t) dt. (3.48) 

Inverting to get the distribution we have 

d0 d7 du (3.49) . e-/8t - / rw 

(3.50) 
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which i s  the Rihaczek distribution, Eq. (2.2). If we use Eq. 
(3.45) instead, we get the complex conjugate of Eq. (3.50), 
and if we use Eq. (3.47), we get the real part. 

Another way to  get the correspondence i s  by associating 
arbitrary mixed products of time and frequency [58]. That 
is, we associate 

tnwm + C(3,  W) (3.51) 

where C(3, W )  indicates a correspondence, and then we 
calculate the characteristic function from Eq. (3.29). Once 
the characteristic function i s  determined, the distribution 
is obtained as above. Many correspondences of the form 
given by Eq. (3.51) have been proposed. An early one was 
that of Born and Jordan [33]. When the above-mentioned 
procedure iscarried out,oneobtainsadistributionwith the 
kernel [58] 

(3.52) 

which has some interesting properties [58], [51], [76], [26], 

Hence one way to  approach the problem of obtaining a 
joint distribution i s  to  write the totality of possible corre- 
spondences for the characteristic function and repeat the 
above calculation. The reason for the wide choice i s  that the 
time and frequency operators do not commute, and hence 
a number of different rules are possible. A general pro- 
cedure for associating functions with operators has been 
developed and has been used in  a number of different fields. 
To an ordinary function g(t, w) one associates the operator 
C(3,  W )  in the following manner [58], [132], [181]: 

G ( 3 ,  w) = j j r(e, 7)  4(e, T)e/83+/rw de dT (3.53) 

[123].4 

where 

r(e, 7)  = - g (t, w )  e-/#' -1" dt dw (3.54) 
47r2 s s  

or, equivalently, 

dB d7 dt dw (3.55) 

where d(0, 7 )  i s  an arbitrary function that satisfies 4(0, 0) = 
+(O, 7)  = 1. The reason for imposing this condition i s  that 
it assures that functions of t o r  w only transform according 
to 

gAt) --$ g, (3) ,  gz(4 + gAW). (3.56) 

Now if this procedure i s  applied to the characteristic 

(3.57) 

. e /#(3 - t )  +/r(W - U )  

function, we obtain the general correspondence 
e/8r+/'" + +(e, 7)ele3 + j r W  

Substituting this into Eq. (3.33), we have, as before, 

M(0, 7)  = $40, T )  s .*(U - 7 )  eious(u + 7 )  du 

(3.58) 

4Although this kernel and the corresponding distribution are 
sometimes attributed to Born and Jordan, they never considered 
joint distributions or kernels. It was derived in [58] using the cor- 
respondence of Born and Jordan. 

and inverting using Eq. (3.30), we obtain the general class 
of distributions, Eq. (2.4). 

The formalisms possible with this approach and the rela- 
tion to classical theory has been analyzed by Groblicki 
[84],Srinivas and Wolf [181], and Ruggeri [171]. 

D. Local Autocorrelation Methods 

A general approach to  deriving time-dependent spectra 
i s  by generalizing the relationship between the power spec- 
trum and the autocorrelation function. The concept of a 
local autocorrelation function was developed by Fano [72] 
and Schroeder and Atal [175], and the relationship of their 
work to time-varying spectra was considered by Ackroyd 
[2], [3]. A local autocorrelation method was used by Lam- 
pard [I221 for deriving the Page distribution, and subse- 
quently other investigators have pointed out the relation 
to other distributions. The basic idea i s  to  write the energy 
density spectrum as 

By making the transformation 7 = t - t', d7 = -dt', we have 
~ n n  

where the autocorrelation function i s  defined as 

R(7) = s * ( t )  s( t  + 7)  dt = S * ( t  - 7 )  s ( t )  dt s s 
(3.60) 

One generalizes the relationship between the energy 
spectrum and R(7) as given by Eq. (3.60) by assuming that 
we can write a time-dependent power spectrum, that is, a 
joint time-frequency distribution, as 

(3.62) 

where now Rt(7) i s  a time-dependent or local autocorrela- 
tion function. Many expressions for Ry(7) have been pro- 
posed, and we illustrate some of the possibilities before 
generalizing. One can simply take 

R'(7) = s( t )  S * ( t  + 7)  (3.63) 

which, when substituted into Eq. (3.62), yields the Rihaczek 
distribution. Mark [I381 argued for symmetry, 

which gives the Wigner distribution. Mark pointed out that 
one could consider a more general form, 

Rt(7) = s*(t - k7) S [ t  + (1 - k ) ~ ] .  (3.65) 

He preferred the value of k = 3 because for the autocor- 
relation function we have R(7) = R * ( - 7 ) ,  and if we want the 
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same to hold for the local autocorrelation function 

Rt(7) = R: ( -7 )  (3.66) 

then the value of k = must be chosen. However, there are 
an infinite number of other forms that can be obtained. A 
generalized time-dependent autocorrelation function can 
be defined from the general distribution, Eq. (2.4), as was 
done by Choi and Williams [51]. Comparing Eq. (2.4) with 
Eq. (3.62), the generalized time-dependent autocorrelation 
function i s  

(3.67) 

The above special cases can be obtained by particular 
choices of the kernel function. 

It i s  convenient to write this as 

(3.68) 

where 

r(u, 7) = 'j e/'"+(%, 7) do. (3.69) 

We now ask, for what types of kernels does the local auto- 
correlation function satisfy Eq. (3.66)? Taking the complex 
conjugate of Eq. (3.67) and substituting -7  for 7 ,  we have 

1 
47r 

R:(-7) = 7 s s  efecu-') +*(-8,  -7 )  s*(u - 7 )  

(3.70) 

Therefore if we want Eq. (3.66) to hold, we must take 

I$(%, 7 )  = +*(-8,  -7). (3.71) 

What i s  interesting about this relation is  that it i s  the 
requirement for the distribution to be real, as discussed in 
Section IV. 

Choi and Williams [51] devised a very interesting way to 
understand the effects of the kernel by examining the local 
autocorrelation function. They point out that since the main 
interest in these distributions i s  to study phenomena that 
are occurring locally, we want to give a relatively large 
weight to s*(u - 17) s(u + 17) when U i s  close to t; otherwise 
we would not be emphasizing the events near time t. Choi 
and Williams used this concept very effectively in devising 
a new distribution. The importance of their work i s  that it 
gives a fresh perspective and a concrete prescription for 
obtaining distributions with desirable properties.They have 
unified these concepts by way of the time-dependent auto- 
correlation function and generalized ambiguity function 
[63], [58], [76]. We discuss their distribution in Section 
Ill-G. 

E. Pseudo-Characteristic Function Method and General 
Bilinear Class 

We have seen in Section Il-C how Ville's method is gen- 
eralized to obtain an infinite number of distributions. We 

now give an alternative derivation which avoids operator 
concepts and depends on the relationship between the 
characteristic function of two variables and the character- 
istic functions of the marginals. Suppose we have a joint 
distribution of P ( t ,  W )  and that their marginals are given by 

P2(w)  = 1 P( t ,  w )  dt. (3.72) P l ( t )  = 'j P(t,  w) dw, 

The characteristic functions of the marginals are 

M1(%) = 'j e/"P,(t) dt, M2(7) = s e/'"P,(w) dw (3.73) 

and comparing with Eq. (3.27), we have 

M(%, 0) = &Il(%), M(0, 7) = M*(7). (3.74) 

Now suppose a characteristic function satisfies the mar- 
ginals, that is, Eqs. (3.74). Then 

will also satisfy them if we take 

qqo, 7 )  = +(%, 0) = 1. (3.76) 

Therefore any characteristic function, if multiplied by a 
function satisfying Eq. (3.76), will produce a new charac- 
teristic function which will also satisfy the marginals. If we 
take Eq. (3.40) as the "original" characteristic function, then 
a whole class i s  obtained from 

M(%, 7) = +(%, 7 )  s .*(U - 4 7 )  e/'"s(u + 7 )  du 

(3.77) 

which when substituted into Eq. (3.30)yields, as before, the 
general class of distributions, Eq. (2.4). 

We emphasize that even though we have been using the 
terminology "characteristic function," they are not proper 
characteristic functions since Eq. (3.75) i s  not a sufficient 
condition. They should properly becalled quasi-or pseudo- 
characteristic functions. We also point out that the choice 
of Eq. (3.40) for M(%, 7)  in Eq. (3.75) i s  arbitrary. 

F. Positive Distributions 

The question of the existence of manifestly positive dis- 
tributions which satisfy the marginals has been a central 
issue in the field. Many "proofs" have been given for their 
nonexistence, and for a long time it was generally believed 
that they did not exist. The uncertainty principle was often 
invoked to make it reasonable that positive distributions 
cannot exist. Mugur-Schachter [I441 has shown where the 
hidden assumptions in these proofs havecrept in.Also, Park 
and Margenau [I541 have made a far-reaching study of the 
relation of joint measurement, joint distributions, and the 
existence of positive distributions. Positive distributions do 
exist, and it is easy to generate an infinite number of them 
[62]. Choose any positive function Q(u, v) of the two vari- 
ables U ,  v such that 

and construct 
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For U and v we now substitute 

To show that the marginals are satisfied, we integrate with 
respect to U, 

1 P(t, U )  d w  = ls(t) I2 s IS(412Q(u, V) d w  

= Is(t)l2 j’ Q(u, v) dv = ls(t) I2.  (3.81) 

The last step follows since dv  = (S(O)(~  dw; similarly for inte- 
gration with respect to t. Functions satisfying Eq. (3.78) can 
readily be constructed. It has been shown that this pro- 
cedure generates all possible positive distributions [73], 
[176]. We note that the positive distributions are not bilinear 
in the signal and that in general Q(u, v) may be a functional 
of the signal. The relation of bilinearity to the question of 
positivity is discussed in the conclusion. The kernel which 
generates the positive distributions from Eq. (2.4) can be 
obtained [62]. 

Whether any of these positive distributions can yield 
intensities that conform to our expectations has been ques- 
tioned. Janssen and Claasen [I011 have pointed out that no 
systematic procedure exists for choosing a unique Q(u, v). 
That of course i s  also true with the bilinear distributions. 
Janssen [102a] has argued that the positive distributions 
cannot satisfactorily represent a chirplike signal, although 
it has been noted [102b] that it can if the kernel is taken to 
be signal dependent. The problem of constructing a joint 
distribution satisfying the marginals arises in every field of 
science and mathematics and is one of the major problems 
to be resolved. There are in general an infinite number of 
joint distributions for given marginals, although their con- 
struction i s  far from straightforward. Because the marginals 
do not contain any correlation information, other condi- 
tions are needed to specify a particular joint distribution. 
That information i s  entered by way of Q ,  although a sys- 
tematic procedure for doing so has not been developed. In 
the case of signal analysis and quantum mechanics there 
i s  the further issue of dealing with a signal (or wave func- 
tion) and constructing the marginal from it. The two mar- 
ginals ls(t)I2, and 1S(o)I2 do not determine the signal. This 
was pointed out by Reichenbach [166], who attributes to 
Bargmann a method for constructing different signalswhich 
have the same absolute instantaneous energy and energy 
density spectrum. Vogt [I951 and Altes [i‘l give similar meth- 
ods of constructing such functions. Since the signal con- 
tains information that the marginals do not, in general Q(u, 
v) must be signal dependent. The question of the amount 
of information needed to construct a unique joint distri- 
bution, and of how much more information the signal con- 
tains than the combination of the energy density and spec- 
tral energy density, requires considerable further research. 

G. Choi- Williams Method 

A new and novel approach has recently been presented 
by Choi and Williams [51] where they address one of the 
main difficulties with the Wigner distribution. As we have 
already seen from Fig. l(a), the Wigner distribution some- 
times indicates intensity in regions where one would expect 

zero values. These spurious values, which are due to the 
so-called cross terms, are particularly prevalent for multi- 
component signals [26], [41], [51], [91], [141]. The cause of 
these effects, sometimes called “artifacts,” i s  usually attrib- 
uted to the bilinear nature of the distribution, and it was 
felt by many that it i s  something we have to live with. In the 
case of the Wigner distribution, extensive studies have been 
made and methods devised to remove them in some way. 
This usually involves violating some of the desired prop- 
erties like the marginals. Choi and Williams argue that 
instead of devising procedures to eliminate them from the 
Wigner distribution, let us find distributions for which the 
spurious values are minimal. Choi and Williams succeeded 
in devising a distribution that behaves remarkably well in 
satisfying our intuitive notions of where the signal energy 
should be concentrated, and that reduces to a large extent 
the spurious cross terms for multicomponent signals. Also, 
the desirable properties of a distribution are satisfied. 

Following Choi and Williams we consider a signal made 
up of components Sk(t), 

N 

s ( t )  = sk(t). (3.82) 

Substituting this into the general equation, Eq. (2.4), we can 
write the distribution as the sum of self and cross terms, 

k = l  

N N 

p(t, a) = c Pkk(t, a) + c Pk/(t, U )  (3.83) 
k = l  k , l= l  

I f k  

where 

s l (  U - r )  SI (  u + T) du dr de. (3.84) 

Choi and Williams [51] realized that by a judicious choice 
of the kernel, one can minimize the cross terms and still 
retain the desirable properties of the self terms. This aspect 
i s  investigated using a generalized ambiguity concept [63] 
and autocorrelation function, as in Section I l l .  They found 
a particularly good choice for the kernel, 

,#,(e, 7) = e-e2rz’o (3.85) 

where U is a constant. Substituting into Eq. (2.4) and inte- 
grating over 8, one obtains 

(3.86) 

Theabilitytosuppress thecrosstermscomes bywayof con- 
trolling U.  The rcw(t - U ,  r), as defined by Eq. (3.691, i s  

From the discussion of Section Ill-D we note that indeed 
it is peaked when U = t and U can be used to control the 
relative importance of r. 

The kernel given by Eq. (3.85) satisfies Eq. (3.71), which 
shows that the local autocorrelation function satisfies Eq. 
(3.66) and that the distribution i s  real. In Section IV  we use 
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FREQUENCY 

(a) (b) 
Fig. 3. (a) Wigner and (b), (c) Choi-Williams distributions for the sum of two sine waves, 
s(t )  = e'y" + ewZr . The Wigner distribution i s  peaked to infinity at the frequencies w,,  w? 
and at the spurious value of w = (w, + w2). The middle term oscillates and is  due to the 
cross terms. The Choi-Williams distributions are shown for (b) U = IOb and (c) U = IO5. 
Note that al l  three distributions satisfy the marginals. The values for w are w ,  = 1 and w2 
= 9. The delta functions at w, and w2 are symbolically represented and are cut off at the 
value of 700. 

this kernel as an example to demonstrate how the general 
properties of a distribution can be readily determined by 

We first note that 

lim ~ ( w ,  U,, w2, U )  = 6[w - +(U, + w2)] (3.91) 
inspection of the kernel. U- m 

The importance of the work of Choi and Williams i s  that 
they have formulated and implemented effectively a means 
of choosing distributions that minimize spurious values 
caused by the cross terms. Moreover they have connected 
in a very revealing way the properties of a distribution with 
that of the local autocorrelation function and characteristic 
function. The kernel given by Eq. (3.85) i s  a one-parameter 
family, but their method can be used to find many other 
kernels having the general desirable properties. 

We give three examples to illustrate the considerable 
clarity in interpretation possible using the distribution of 
Choi and Williams. We first take the sum of two pure sine 
waves, 

s(t)  = + A2e/"". (3.88) 

The Choi-Williams distribution i s  readily worked out [51], 

Pcw(t, U )  = A:6(w - U,) + A@& - U,) + 2A1A2 

' COS (02 - wq)t V ( W ,  U,, ~ 2 ,  U) (3.89) 

where 

and forthat casethedistribution becomes infinitelypeaked 
at w = $(U, + w2). In fact, as U ---t 03, it becomes the Wigner 
distribution, since for that limit the kernel becomes 1. As 
long as U i s  finite, the cross terms will be finite at that point 
andwill increaseas &. Notethat ifuissmall,thecrossterms 
are small and do not obscure the interpretation with spu- 
rious values. In Fig. 3 we illustrate the effect of U. We have 
represented the delta function symbolically, but the cal- 
culation for the cross terms is  exact. We see that the cross 
terms may easily be eliminated for all practical purposes by 
choosing an appropriate value of U.  

Another revealing example i s  the sum of two chirplike 
signals [51], 

114 

s ( t )  = A(:) e ~ n l t ' / 2 + / 8 ' f * / 2 + / w l f  

+ Az( ~)114e-..f.; .+/8~t2,z+... .  (3.92) 

which have instantaneous frequencies along w = Blt + w1 
and w = &t + w2. We expect the concentration of energies 
to be along the instantaneous frequencies. Fig. 4 i s  a plot 
of the Wigner and the Choi-Williams distributions. Note 
the middle hump in the Wigner distribution. On the other 
hand, thedistribution of Choi and Williams is  clear and eas- 
ily interpretable. We emphasize that thedistribution of Choi 
and Williams satisfies the marginals for any value of U. 

FREQUENCY - 
(a) (b) 

Fig. 4. (a) Wigner and (b) Choi-Williams distributions for the sum of two chirps. The Wig- 
nerdistribution has artifactsand spuriousvalues in between the twoconcentrationsalong 
the instantaneous frequencies of the chirps. In the Choi-Williams distribution the spu- 
rious terms are made negligible by an appropriate choice of U. 
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FREQUENCY -* 

(a) (b) 
Fig. 5. (a) Wigner and (b) Choi-Williams distributions for 

. Both distri- 
butions show concentration at the instantaneous frequen- 
cies w = U ,  + p, t and w = w2 + b2w, cos w, t. For the Wigner 
distribution there are spurious terms in between the two 
frequencies. They are very small in magnitude in the Choi- 
Williams distribution. 

signal s(t )  = A,e/B't2'2+/w1t + A, e ~ u z t  + / 4 2 s m u m t  

In Fig. 5 we show the Wigner and Choi-Williams distri- 
butions for a signal that i s  the sum of a chirp and a sinu- 
soidal modulated signal, 

For both distributions we see a concentration along the 
instantaneous frequencies; however, for the Wigner dis- 
tribution there are "interference" terms which are very 
minor in the Choi-Williams distribution. 

IV. UNIFIED APPROACH 

As can be seen from the preceding section, there are many 
distributions with varied functional forms and properties. 
A unified approach can be formulated in a simple manner 
with the advantage that all distributions can be studied 
together in a consistent way. Moveover, a method which 
readily generates them allows the extraction of those with 
the desired properties. As we will see, the properties of a 
distribution are reflected as simple constaints on the ker- 
nel. By examination of the kernel one can determine the 
general properties of the distribution. Also, having a gen- 
eral method to represent all distributions can be used 

advantageously to develop practical methods for analysis 
and filtering, as was done by Eichmann and Dong [70]. Excel- 
lent reviews relating the properties of the kernel to the 
properties of the distribution have been given by Janse and 
Kaizer [97], Janssen [98], Claasen and Mecklenbrau ker [56], 
and Boashash [26]. 

For convenience we repeat the general form here, 

p(t, = 4 J S J e-/et-/rw+/su 640, 7)  
4s 

. S* U - - s U + - 7 du d7 d0. (4.1) ( : > (  :> 
The kernel can be a function of time and frequency and in 
principle can be a function of the signal. However, unless 
otherwise stated, we shall here assume that it is a not afunc- 
tion of time or frequency and is independent of the signal. 
Independence of the kernel of time and frequency assures 
that the distribution i s  time and shift invariant, as indicated 
below. If the kernel is  independent of the signal, then the 
distributions are said to be bilinear because the signal enters 
only twice. An important subclass are those distributions 
for which the kernel i s  afunction of 67, the product kernels, 

4(e, 7) = dPR(e7). (4.2) 

For notational clarity, we will drop the subscript PR since 
one can tell whether we are talking about the general case 
or the product case by the number of variables attributed 
to 4b3, 7). In  Table 1 we list some distributions and their cor- 
responding kernels. 

The general class of distributions can be expressed in 
terms of the spectrum by substituting Eq. (1.3) into Eq. (2.4) 
to obtain 

. S* U + - 6  S U - - 0  du d7d0.  (4.3) ( : > (  :> 
Table 1 Some Distributions and Their Kernels 

Reference Kernel d&3. r) Distribution P(t. d 

1 1 e-/rw s * ( t  - t r )  s( t  + i r )  d r  
2 r  

Wigner [199], Ville [I941 1 

Margenau and Hill [I331 COS 3 er 

Kirkwood [107], Rihaczek [ I 6 7  e/"/' 

sinc (581 

Page [I521 

Choi and Williams [51] 

sin a& 

Spectrogram 
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The best practical method to determine the kernel for a 
given distribution is to put it into the form of Eq. (4.1). Oth- 
erwise one can calculate the kernel from s s e/st+”wP(t, CO) dt do 

(4.4) 
’(” = s eloUs*(u - $7) s(u + $7) du 

which i s  obtained from Eq. (4.1) by Fourier inversion. It i s  
alsoconvenienttodefinethecross distribution function for 
two signals, as was done by Eq. (3.84). The main reason for 
defining it is that the distribution of the sum of two signals 

s( t )  = Sl(t) + S 2 ( t )  (4.5) 

~ ( t ,  U)  = pll(t, W )  + ~ ~ ~ ( t ,  W )  + p12(t, U )  + p2,(t, U). 

can be conveniently written as 

(4.6) 

If s,(t) and s2 ( f )  are each normalized to 1, then an overall 
normalization may be inserted so that s ( t )  and the distri- 
bution are normalized to 1.  

A, Physical Properties Related to Kernel 

We now show how the properties of the distribution are 
related to the properties of the kernel. We shall give only 
a few derivations to indicate the general approach since the 
procedures are fairly simple. 

lnstantaneous Energy and Spectrum: If P(t,  U )  is  to be a 
joint distribution for the intensity, we want it to satisfy the 
individual intensities of time and frequency. That is, when 
the frequency variable i s  integrated out, we expect to have 
the instantaneous power Js(t)I2, and similarly when time i s  
integrated out, we expect to have the energy density spec- 
trum IS(w)I2. Integrating Eq. (4.1) with respect tow we have 

1 P(t, U)  d w  = - b(7) e/ecu-*)qW?, 7)  
27r s s s  

(4.7) 

1 s e’e(U-t’4(0, O ) ~ S ( U ) ( ~  dO du. (4.8) = 
27r 

The only way this can be made equal to Js(t)I2 i s  if 

1 e/ecu-”4(0, 0) de = b(t - U )  (4.9) 
2s 

which forces 
$(e, 0) = I .  (4.10) 

Similarly, if we want 

P(t,  w )  dt = IS(w)1* (4.11) 

we must take 
d(0, 7 )  = 1 .  (4.12) 

It also follows that if the total energy is  to be preserved, that 
is, s P(t, w )  d w  dt = 1 = total energy (4.13) 

we must have 

440, 0) = 1 (4.14) 

which is  called the normalization condition. We note that 
this condition is  weaker than the conditions given by Eqs. 
(4.10) and (4.12), that is, it i s  possible to have a joint distri- 
bution whose total energy i s  the same as that of the signal, 
but whose marginals are not satisfied. An example of this 
i s  the spectrogram discussed in Section VI. 

Reality: The bilinear distributions are not in general pos- 
itive definite, which causes serious interpretive problems. 
It has been generally argued that at least they should be 
real. By taking the complex conjugate of Eq. (4.1) and com- 
paring it to the original, it i s  straightforward to show that 
a necessary and sufficient condition for a distribution to be 
real i s  that the kernel satisfy 

w, 7 )  = d*(-e, +. (4.15) 

Time and Frequency Shifts: If we translate the signal by 
an amount to, we expect the whole distribution to be trans- 
lated by the same amount. Letting s ( t )  + st&) = s ( t  + to) and 
substituting in Eq. (4.1), we have 

r r r  

(4.16) 
~ o n ”  

S *  U - - 7  s U + - dOd7du (4.18) ( : > (  :.> 
= P(t + tor w). (4.19) 

Hence a shift in the signal produces a corresponding shift 
in thedistribution. We note that the proof requires that the 
kernel be independent of time and frequency. A similar 
result holds in the frequency domain, that is, if we shift the 
spectrum by a fixed frequency, then the distribution i s  
shifted by the same amount. If 

S(w) -+ S(w + wo) or s( t )  -+ s(t)e-/wot (4.20a) 

then 

P(t, 0) -+ P(t, + WO). (4.20b) 

Global and Local Quantities: If we have a function g(t, w )  
of time and frequency, its global average is  

(g ( t ,  4) = s 1 g(t, w )  P(t, w )  d w  dt. (4.21) 

The local or mean conditional value, the average of g(t, w )  
at a particular time, i s  
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where P,(t) i s  the density in  time, 

Pl(t) = 1 P(t ,  U )  d w  (4.23) 

and i s  equal to Js(t)I2 if Eq. (4.10) i s  satisfied. Similar equa- 
tions apply for the expectation value of a function at a par- 
ticular frequency. 

Mean Conditional Frequency and Instantaneous Fre- 
quency: The local or mean conditional frequency i s  given 
by 

( U ) ,  = 1 wP(t, w )  dw. 
P,(t) 

(4.24) 

We have avoided using the term "instantaneous" fre- 
quency for reasons to be discussed shortly. A straightfor- 
ward calculation leads to  

e/e(u - I) de du (4.25) 

where the signal has been expressed in terms of its ampli- 
tude and phase, 

s(t) = A(t)e/"'". (4.26) 

For the product kernels this becomes 

(w>,P,(t) = 4(0) A2(t) cp'W + 24'(0) A(t) (4.27) 

We must now face the question as to  what we want this 
where the primes denote differentiation. 

to be equal to. First we note that if we take 

in Eq. (4.25) or 

+(O) = 1, 4'(0) = 0 (4.29) 

in Eq. (4.27), we then have P,(t) equalingA*(t) and we obtain 

( U > ,  = d ( t )  (4.30) 

a pleasing result reminiscent of the usual definition of 
instantaneous frequency. But it i s  not. Instantaneous fre- 
quency is the derivative of the phase if the analytic signal 
i s  used (see Section VIII). Equation (4.30) i s  true for any sig- 
nal. Moreover, even though instantaneous frequency i s  
meaningfully defined for certain types of signals [79], [153], 
[168], [191], this result i s  for all signals. It has been specu- 
lated [21], [56] that this indicates a method for ageneral def- 
inition of instantaneous frequency which wil l hold under 
all circumstances. However, considerably more work has 
to be done to fully develop the concept. Conversely, Boas- 
hash [26] has argued that since Eq. (4.30) corresponds to the 
instantaneous frequency only when the analytic signal i s  
used, we should always use the analytic signal in these dis- 
tributions. These issues are discussed at greater length in 
Section VIII. 

Correlation Coefficient a n d  Covariance; The covariance 
and the correlation coefficient very often afford much 
insight into the relationship between two variables. An 
application of this i s  given in Section V, where we apply 
these ideas to  the Wigner distribution. For quasi-distri- 

butions the covariance was considered first by Cartwright 
[46]. The covariance i s  defined as 

cov (tu) = ( tu )  - ( t > ( w )  (4.31) 

and the correlation coefficient by 

(4.32) 

where a, and uw are the duration and the bandwidth of a 
signal as usually defined [Eq. (8.10)]. The simplest way to 
calculate ( tu)  i s  to  use Eq. (3.29) with Eq. (3.77), 

cov (tu) r = -  
UP, 

This is an interesting relation because the derivative of the 
phase is acting as the frequency. We should emphasize that 
the covariance and the correlation coefficient, as used here, 
do not always have the same behavior as their standard 
counterparts because the distribution i s  not necessarily 
positive definite. 

Spread a n d  Second Conditional Moment: Having 
obtained a reasonable result for the mean frequency at a 
particular time, it i s  natural to ask for the spread or broad- 
ness of frequency for that time. This was done by Claasen 
and Mecklenbrauker [54] for the Wigner distribution case 
in the signal analysis context, and by others in thequantum 
mechanical context [82]. Unfortunately difficulties arise, as 
we shall see. First considerthe second conditional moment 

( a 2 ) ,  = 1 w2P(t ,  w )  dw. 
Pl(t) 

(4.34) 

The calculation of this quantity i s  important for many rea- 
sons. In  quantum mechanics it i s  particularly relevant 
because it corresponds to the local kinetic energy. It has 
been considered by a number of people who have pro- 
posed different expressions for it. It was subsequently 
shown that these different expressions are particular real- 
izations of different distributions. We give the results for 
the product kernels [123], 

- - 1 [I - 44"(0)] A"(t) - + pp'2(t). (4.35) 
2 A(t) 

Even though in general the second conditional moment 
should be manifestly positive, that i s  not the case with most 
of thedistributions, including the Wigner distribution.This 
makes the usual interpretation of these quantities impos- 
sible. However, aswewill see below, therearedistributions 
for which the second conditional moment and thevariance 
are manifestly positive. 

Now consider the spread of the mean frequency at a given 
time, 

<U:>, = (W - (W>J2P(t, W )  d w  ( w 2 ) ,  - ( U ) : .  (4.36) s 
Using Eqs. (4.35) and (4.29) we have 

r 7 2  
1 
2 

(a:), = - [I + 44"(0)] 

- - 1 [I - 44"(0)] A"(t) -. 
2 A(t) 

(4.37) 
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As before, this expression will become negative for most 
bilinear distributions and therefore cannot be interpreted 
as a variance. However, consider the choice [I231 

4”(0) = a. (4.38) 

Then the spread becomes 
r 7 2  

which is manifestly positive. Also, for this case, 

(4.40) 

which i s  also manifestly positive. There are an infinite num- 
ber of distributions having this property since there are an 
infinite number of kernels with the same second derivative 
at zero. 

Group Delay: Suppose we focus on the frequency band 
around the frequency w’ and assume that the phase of the 
spectrum is a slowly varying function of frequency so that 
a good approximation to it, around point U’, i s  a linear one 
[1531, [1681, 

$(a) = $(U‘) + (U - w’)$’(w’) (4.41) 

where $(U) is the phase of the spectrum, 

S(w) = JS(w)(e/J.‘“’. (4.42) 

If we consider a signal that i s  made up of the original spec- 
trum concentrated onlyaround the frequencies U’, then we 
have the corresponding signal 

s,.(t) = - 6 
. elwi dw. (4.43) 

We now write the spectrum in terms of the original signal 
as given by Eq. (1.3), 

s s(w - w , ) e l [ J . ( W ’ ) + ( W - W ’ ) J . ’ ( W ’ ) I  

s(t”[J.‘w’’ + (0 - w?J.’(w’)l sJt) = - 
23r s s  
. s[-t’ + $’(U’) + t] dt’. (4.44b) 

Therefore 

Hence the envelope of the signal at frequency w’ i s  
delayed by -$(a’), and the phase i s  delayed by -$(w’)/w’. 
The delay of the envelope i s  called the group delay, which 
we now write for an arbitrary function w, 

tg = --$‘(U). (4.46) 

From the point of view of joint time-frequency distri- 
butions we may think of the group delay as the mean time 
at a given frequency. Now by virtue of the symmetry 
between Eqs. (4.1) and (4.3) everything we have done for the 
expectation value of frequency at a given time allows us to 
readilywritedown thecorresponding results for theexpec- 
tation value of time at a given frequency. 

In particular, 

(0, = -$’(a) (4.47a) 

i f  the kernel i s  chosen such that 

d40, 7) = 1, amcs.,i/ = 0. (4.47b) 
ae g = o  

For the case of product kernels the conditions are the same 
as that given by Eq. (4.29). 

Transformation of Signal and Distribution: In Table 2 we 
list the transformation properties of the distribution and 
the characteristic function for simple transformations of 
the signal. 

Range of Distribution: If a signal i s  zero in a certain range, 
we would expect the distribution to be zero, but that is not 
ture for all distributions. It can be seen by inspection that 
the Rihaczek distribution i s  always zero when the signal i s  
zero. This i s  not the case for the Wigner distribution. The 
general question of when adistribution iszero has not been 
fully investigated. Claasen and Mecklenbrauker [56] have 
derived the following condition for determining whether 
a distribution i s  zero before a signal starts and after it ends: 

Even when this holds, it i s  not necessarily the fact that the 
distribution i s  zero in regions where the signal i s  zero. 

Real and Imaginary Parts of Distributions: If a complex 
distribution satisfies the marginals, then so do the complex 
conjugateand the real part. The imaginary part indeed must 

Table 2 Transformation Properties of Distributions and Characteristic Functions for 
Transformations of the Signal 

Characteristic 
Signal Distribution Function Kernel Product Kernel 

Transformation s ( t )  P(t, 4 7 )  $48, 7) 4(87) 
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integrate to  zero for each variable, that is, 

Im s P ( t ,  w )  dt = 0, Im s P ( t ,  w )  dw = 0. (4.49) 

The complex conjugate distribution 

P*( t ,  w )  has the kernel $*(-0, -7) (4.50) 

and the real part distribution 

Re P ( t ,  a) has the kernel ;[+(e, T )  + $*(-0, -7)J. 

(4.51) 

For example, using Eq. (4.51) we see that the kernel of the 
real part of the Rihaczek distribution i s  cos $07. 

Example: To illustrate how readily one can determine the 
general properties of a distribution by a simple inspection 
of the kernel, we use as an example the distribution of Choi 
and Williams [51]. The Choi-Williams kernel i s  

$cw(~,  7)  = e-0zr2iu (4.52) 

and we see that it i s  a product kernel, 

+cw(x) = (4.53) 

where x = 07. From Eqs. (4.10) and (4.12) it is readily seen 
that the marginals are satisfied, that the mean frequency is 
the derivative of the phase [verified using Eq. (4.29)], that 
the shift properties are automatically satisfied, and that all 
properties and transformations in Table 2 are satisfied since 
it is a product kernel. 

B. lnversion and Representability 

inverse Fourier transform of Eq. (4.1) and obtain 
To obtain the signal from a distribution we take the 

.*(U - ; s(u + ; 

or 

. e / ( t - r ' ) w + / ~ [ ~ - ( r + r ' ) i 2 ~  d x dw d0. (4.55) 

By taking a particular value of t', for instance zero, we have 

Hence the signal can be recovered from the distribution up 
to a constant phase. 

These equations can be written in terms of the gener- 
alized characteristic function [58], [63] as defined by Eq. 
(3.58), 

w e ,  t - t') - .  
e d0 

(4.57) 

or 

or 

The preceding relations can be used to  determine 
whether a signal exists that will generate a given P ( t ,  w).  We 
call such distributions representable or realizable. A nec- 
essary and sufficient [61] condition for representability i s  
that the right-hand side of Eq. (4.55) or Eq. (4.58) result in 
a product form as indicated by the left-hand side. 

Nuttall [I481 has made an important contribution regard- 
ing the reversibility problem. He has been able to char- 
acterize the distributions from which the signal can be 
recovered uniquely. We note that from a given distribution 
thecharacteristic function M ( ~ , T )  can always be determined 
uniquely since it i s  the Fourier transform of the distribution 
as defined by Eq. (3.30). However, to  obtain the signal one 
has to divide the characteristic function by the kernel $40, 
T),which maybezeroforsomevaluesofOand7. Nuttall [I481 
has shown that the signal can be recovered uniquely if the 
kernel has only isolated zeros. The number of zeros can be 
infinite, or the kernel may be zero along a line in the 0, 7 

plane, However, if the kernel i s  zero in a region of nonzero 
area, then the signal cannot be recovered. The basic reason 
is that for isolated zeros the ratio M(0, t)l4(0, t )  can be 
obtained by taking limits at the points where the kernel i s  
zero. However, if the kernel i s  zero in a region, then the 
ratio i s  undefined. 

C. Relations Between Distributions 

Many special cases relating one particular distribution to  
another have been given in the literature. A general rela- 
tionship between any two distributions can be derived 
readily [61]. 

Having such aconnection allows thederivation of results 
for a new distribution in a simple way if the answers are 
already known for another distribution. In addition it clar- 
ifies the relation between distributions. 

Suppose we have two distributions P1 and P2 with cor- 
responding kernels $, and $2. Their characteristic functions 
are 

(4.60) 

(4.61) 

and dividing one by the other we have 

(4.62) 

Taking the Fourier transform to obtain the distribution we 
have 

. P2(t' ,  U')  d0 d7 dt' dw'. (4.63) 
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It i s  sometimes convenient to  write this as 

Pl(t, U )  = S l g(t' - t, U' - w)P2(t', U') dt'  d w '  (4.64) 

with 

A very useful way to  express Eq. (4.64) i s  in operator form. 
We note the general theorem [60] 

= G( - j  k, - j  k) H(t, w )  (4.66) 

which, when applied to Eq. (4.63), gives 

D. Other Topics 

Mean Values of Time-Frequency Functions: We have 
already defined and used global and local expectation val- 
ues. There exists a general relationship between averages 
and correspondence rules which has theoretical interest 
and i s  very often the best way to calculate global averages. 
One can show [58] that the expectation value calculated in 
the usual way 

(g(t, 4) = S g(t, w) P(t, w) d w  dt (4.68) 

can be short-circuited by calculating instead 

( g ( t ,  a)> = S s*(t) '33, W )  s(t) dt (4.69) 

if the correspondence between g and G i s  given by Eq. (3.55). 
Bilinear Transformations: A general bilinear transforma- 

tion may be written in  the form 

P(t, U )  = l K(t, U ;  x, x') s*(x) s(x') dx dx' (4.70) 

as has been done by Wigner [200], Kruger and Poffyn [114], 
and others [go], [130], [170]. By requiring the distribution to  
satisfy desirable properties, Wigner obtained the condi- 
tions to be imposed on K. If we require that the distribution 
be time-shift invariant, then it can be shown [114], [200] that 
K must be a function of t - x and t - x', or equivalently a 
function of 2t - x - x' and x - x'. In addition if the dis- 
tribution is to be frequency-shift invariant, then K must be 
of the form 

K(t, w ;  x, x') = e/(x-x')wK(t, 0; x, x'). (4.71) 

Hence kernels which yield time- and frequency-shift in- 
variant distributions are of the form [114], [200], [I301 

(4.72) 

where the new kernel KO i s  only a function of two variables. 
By comparing Eq. (4.70) with Eq. (2.4) we have 

K(t, U; x, x') = e~"""KO(2t - x - x', x - x') 

. $(e, x' - x) d0 (4.73) 

or 

We note that Ko(t, 7) i s  essentially r(t, 7), as defined in Eq. 
(3.69). 

Additional conditions imposed on the distribution are 
reflected as constraints [go], [114], [170], [200], [I301 on K in 
the same manner that we have imposed constraints on f ( 0 ,  
7). However, as shown by Kruger and Poffyn [114], the con- 
traints f ( 0 , ~ )  are much simpler to  formulate and express as 
compared to  those on K, and that is why Eq. (2.4) is easier 
to  work with than Eq. (4.70). For example, the time- and fre- 
quency-shift invariant requirement i s  imposed by simply 
requiring that 4(8, 7) not be a function of time and fre- 
quency. 

Characteristic Functions and Moments: We have seen in 
Section I l l  that characteristic functions are a powerful way 
to derive distributions. The characteristic function i s  closely 
related to the ambiguityfunction (see Section VI). We would 
like to  emphasize that, in addition, characteristic functions 
are often the most effective way of studying distributions. 
For example, consider the transformation property of the 
characteristic function as given by Eq. (4.62) and compare 
it to  the transformation property of the distributions as 
given by Eq. (4.63) 

We also point out the relationship of the generalized 
characteristic functions and the generalized autocorrela- 
tion function. Comparing Eq. (3.67) with Eq. (3.77) we see 
that 

This relation can be used to  derive the transformation prop- 
erties of the autocorrelation function. If /?!" and /?i2'(7) are 
the autocorrelation functions corresponding to  two dif- 
ferent distributions, then we have 

where we have used Eq. (4.62). Writing the characteristic 
function in terms of the autocorrelation function we have 

t ') Riz)(r) dt' (4.78) 

where 

(4.79) 

Using the characteristic function, we can also obtain the 
transformation of mixed moments. Using Eqs. (3.29) and 
(4.611, 
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Some straightforward manipulation yields 
n m  

where 

These are very convenient relations for obtaining the 
moments of a distribution if one has already found them 
for another one. 

V. WICNER DISTRIEUTION 

The Wigner distribution was the first to be proposed and 
is certainly the most widely studied and applied. The dis- 
covery of i ts  strengths and weaknesses has been a major 
thrust in the development of the field. It can be obtained 
from the general class by taking 

dw(e, 7) = I. (5.1) 

The Wigner distribution i s  

and in terms of the spectrum, it i s  

A. General Properties 

Becausethe kernel isequal to1,thepropertiesoftheWig- 
ner distribution are readily determined. Using the general 
equations of Section IV, we see that the Wigner distribution 
satisfies the marginals, that it i s  real, and that time and fre- 
quency shifts in the signal producecorresponding time and 
frequency shifts in the distribution. Since the kernel i s  a 
product kernel, all the transformation properties of Table 
2 in Section IV are seen to be satisfied. 

The inversion properties are easily obtained by special- 
izing Eqs. (4.54)-(4.56) for the case of 4 = 1, 

(5.4) 

(5.5) 

s( t )  = s W ( i  t, u)eJtu dw. (5.6) 
s * (0) 

Mean Local Frequency, Group Delay, a n d  Spread: Since 
the kernel for the Wigner distribution is 1, we have from 
Eq. (4.28) 

( w ) ~  = pyt) if s(t)  = A(t)ejdt'. (5.7) 

From Eqs. (4.35) and (4.37), the local mean-squared fre- 
quency and the local standard deviation are given by 

(5.8) 

(5.10) 

a result obtained by Claasen and Mecklenbrauker [54]. As 
they have pointed out, it generally goes negative and can- 
not be interpreted properly. 

B. Range of Wigner Distribution 

From the functional relation to the signal onecan develop 
some simple rules of thumb to ascertain the behavior of the 
Wigner distribution [59]. From Eq. (5.2) we see that for a par- 
ticulartimeweareadding up pieces made from the product 
ofthesignalat apasttimemultiplied bythesignalatafuture 
time, the time into the past being equal to the time into the 
future. Therefore to see whether the Wigner distribution 
iszeroatapoint,onemaymentallyfold the part ofthesignal 
to the left over to the right and see whether there i s  any 
overlap. If so, the Wigner distribution will not be zero, oth- 
erwise it will. Now consider a finite-duration signal in the 
interval t ,  to f2  as illustrated: 

t l  t z  

If we are any place left of tl and fold over the signal to the 
right, there will be no overlap since there i s  no signal to the 
left of tl to fold over. This will remain true up to the start 
of the signal at timer,. Hence for finite-duration signals, the 
Wignerdistribution iszerouptothestart. This is  adesirable 
feature since we should not have a nonzero value for the 
distribution if the signal i s  zero. At any point to the right 
of tl but less than t2, the folding will result in an overlap. 
Similar arguments hold for points to the right of t2 .  There- 
fore for a time-limited signal, the Wigner distribution is zero 
before the signal starts and after the signal ends, that is, 

W(t, w )  = 0 for t srl or t 2 t2 if s( t )  i s  nonzero 

only in the range (t, ,  t2). (5.11) 

Due to the similar structures of Eqs. (5.2) and (5.3), the 
same considerations apply to the frequency domain. If we 
have a band-limited signal, the Wigner distribution will be 
zero for all frequencies that are not included in  that band, 

W(t, w)  = 0 for w I U, or w 2 w2 i f  S(W) i s  nonzero 

only in the range (a1, w2). (5.12) 

These properties are sometimes called the support prop- 
erties of the Wigner distribution. 

Now consider a signal of the following form: 

/wwwv\n, rn 

where the signal i s  zero from t2 to f 3 ,  and focus on point t,. 
Mentally folding the right and left parts of t, it is clear that 
there will be an overlap, and hence the Wigner distribution 
i s  not zero even though the signal is. In general the Wigner 
distribution i s  not zero when the signal is zero, and this 
causes considerable difficulty in interpretation. In speech, 
for example, there are silences which are important, but the 
Wignerdistribution masks them. These spurious valuescan 
be cleaned up by smoothing, but smoothing destroys some 
other desirable properties of the Wigner distribution. 

t l  t z  ta t s  
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Range of Cross Terms: Similar considerations apply to the 
cross Wigner distribution. In particular, for any two func- 
tions sl(t) and s2(t) which are zero outside the intervals (tl, 
t2) and (t3, t4), respectively, the cross Wigner distribution is 
zero for the ranges indicated [60], [92al, [92b] 

1 1 
2 2 i f  t 5 - (tl + t3), t 2 - ( r 2  + r4 ) .  (5.13) 

In the frequency domain we have that for two band-limited 
functions S,(W) and &(U), which are zero outside the inter- 
vals (w,, w2)  and (a3, w4), respectively, 

These relationships are useful in calculating the Wigner dis- 
tribution for finite-duration signals [60], [92a], [92b]. 

C. Propagation of Characteristics (e.g., Noise) 

Almost every worker who has applied the Wigner dis- 
tribution has noticed that it i s  "noisy." Indeed wewil l  show 
that in general if there is noise for a small finite time of the 
signal, that noise will "appear" at other times, and if the 
signal i s  infinite, then it will appear for all time. This effect 
is a general property of the Wigner distribution that must 
be fully understood if one i s  to develop a feeling for its 
behavior. The important point to realize i s  that the Wigner 
distribution at a particular time generally reflects proper- 
ties that the signal has at other times because the Wigner 
distribution is highly nonlocal. 

Consider a finite-duration signal, illustrated below, where 
we have indicated bythe wavy lines any local characteristic, 
but which for convenience we shall call noise: 

ta t b  

Suppose we calculate the Wigner distribution at a time 
where this characteristic does not appear, say, at point t,. 
Folding over the signal, we see that there is no overlap of 
the left part of the signal with the noise in the signal, and 
hence noise will not appear in the distribution at time t,. 
Now consider point t b .  The overlap will include the noise 
in the signal and therefore noise will appear in the distri- 
bution, even though there is no noise in the signal at that 
time. Now considering a signal that goes from minus infin- 
ity to plus infinity, noise will appear everywhere since for 
anypointwechoose,foldingoverthesignal aboutthat point 
will always have an intersection with the noise in the signal. 
In Fig. 6 we give an example for a finite-duration signal. 
Noise appears for times in between the arrows, even though 
the noise in the signal was of shorter duration. 

D. Examples 

Example I :  For signals of the form 

(5.15) 

0 1  0 2  

FREQUENCY - 
Fig. 6. Example illustrating the "propagation" of noise in 
the Wigner distribution. Noise (between arrows) appears in 
the Wigner distribution at times for which there is no noise 
in the signal. If the signal was of infinite duration, noise 
would appear for all time in the Wigner distribution, 
although it was of finite duration in the signal. 

the Wigner distribution i s  

(5.16) 

The first thing we should note i s  that the Wigner distri- 
bution i s  positive, and this is the only signal for which it is 
positive [93], [157], [180]. If a is small, then the distribution 
i s  concentrated along the line w = W ,  + Pt, which is the 
derivative of the phase and corresponds to the local mean 
frequency. In the extreme case where we have a chirp (i.e., 
a = 0) the distribution becomes' 

W(t, w )  = 6(w - Pt - w,) when a = 0 (5.17) 

which shows that the energy i s  totally concentrated along 
the instantaneous frequency. If we further take P = 0, then 
the distribution is peaked only at the carrier frequency, 

w(t, U )  = - a, p = 0. (5.18) 

In Fig. 7 we plot the Wigner distribution to illustrate how 
it behaves as the Gaussian becomes more chirplike. 

The correlation coefficient for this case gives a revealing 
answer. We find that 

7r 

7 r 

The covariance is therefore 

(5.20) P 
2a 

cov (tu) = -. 

WhenP --* 0, thecovariancegoes tozero,which implies that 
we have no correlation between time and frequency. That 
i s  reasonable because we have a pure sinewave for all time. 
As a --* 0, the covariance goes to infinity and we have total 
correlation, which is also reasonable since a chirp forces 
total dependence between time and frequency. Similar 
considerations apply to the correlation coefficient as 

5 0 n e  must be careful in taking the limit because the signal can 
no longer be normalized. The normalizing factor is omitted when 
calculating Eq. (5.17). 
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(a) (b) 
Fig. 7. Wigner distribution for Gaussian signal s ( t )  = Ae-"'*~2"4r' /2+~uo' . A s a  + 0, making 
the signal more chirplike, the Wigner distribution becomes concentrated around the 
instantaneous frequency w = U,, + P t .  P = 0.3, w,, = 3. (a) a = 1. (b) a = 0.5. (c) a = 0.1. 
Time and frequency variables are plotted from -5 to 5 units. 

defined by Eq. (4.231, a straightforward calculation gives 

(5.21) w(t, = A: e-alt2-(o-i31t-01)2/a1 + 4 e - a 2 t 2 - ( w - ~ 2 t - w 2 ) 2 / 4  

7r 7r 

+ A1A2(ala2)l/44 f i  Re 
The correlation coefficient goes to 1 as a -+ 0, which indi- 
cates perfect correlation, and it goes to zero as a -+ 00, which 
implies no correlation. 

Example 2: We take 

s(t) = Ale'W1t + A2e'w2t. 

The Wigner distribution is 

W(t, w )  = A:6(w - ~ 1 )  + A:6(w - ~ 2 )  + M I A 2  

(5.22) 

. - ;(Ul + w2)j COS (a2 - wl)t. (5.23) 

Besides the concentration at w1 and w2 as expected, we also 
have non zero values at the frequency $(al + w2). This i s  an 
illustration of the cross-term effect discussed previously. 
The point w = j (wl  + w2) i s  the only point for which there 
is an overlap since the signal is sharp at both w1 and w2.  This 
distribution is illustrated in Fig. 3(a). For the sum of sine 
waves, we will always have a spurious value of the distri- 
bution at the midway point between any two frequencies. 
Hence for N sine waves we will have :N(N - 1) spurious 
values. We note that the spurious terms oscillate and can 
be removed to some extent by smoothing. 

Example 3: For the finite-duration signal 

s(t)  = e'"O', 0 5 t c T (5.24) 

{ t ( y 2  - Yl)t + i [ w  - +2 + 4112 
i(72 + 71) 

exP (5.27) 

where 

71 = a1 + iol, 72 = a2 - io2. (5.28) 

Fig. 4(a) illustrates such a case. The middle hump is  again 
due to the cross-term effect. 

E. Discrete Wigner Distribution 

A significant advance in the use of the Wigner distri- 
bution was its formulation for discrete signals. A number 
of difficulties arise, but much progress has been made 
recently. A fundamental result was obtained by Claasen and 
Mecklenbrauker [53], [54], where they applied the sampling 
theorem to the Wigner distribution. They showed that the 
Wigner distribution for a band-limited signal i s  determined 
from the samples by 

T m  
W(t, w )  = - s*( t  - kT)e-2jwkTs(t + kT)  (5.29) 

T k = - m  

the Wigner distribution i s  

w(t, 0) = - sinc (w - w o k  

where I I T  is the sampling frequency and must be chosen 
so that T c 7r/2wmax, where om,, i s  the highest frequency in 
the signal. The sampling frequency must be chosen so that 

ws L 4wmax. (5.30) 

For a discrete-time signal s(n), with T equal to 1, this 

t T o s t c -  
2 

- < t < T. (5.25) 

This i s  plotted in Fig. 2(a). As discussed, the Wigner dis- 
tribution goes to zero at the end point of a finite-duration 

a 

T - t  T 
sinc(w - wo)(T - t ) ,  

7r 2 
-- - 

becomes 

l o  
W(n, 0) = - c s*(n - k)e-Yeks(n + k) .  (5.31) 

signal. Also, note the symmetry about the middle time, k = - m  

w i i ch  is notthecasewiththePagedistribution.TheWigner 
distribution treats past and present on an equal footing. 

In the discrete case as given by Eq. (5.29) the distribution 
i s  periodic in w, with a period of a rather than 27r, as in the 
continuous case. Hence the highest sampling frequency Example 4: For the sum of two Gaussians 

that must be used i s  twice the Nyquist rate. Chan [48] 
devised an alternative definition, which i s  periodic in 7r.  

Boashash and Black [25] have also given a discrete version 
of the Wigner distribution and argued that the use of the 
analytic signal eliminates the aliasing problem. They devised 

+ A2 (:)'I4 e-U2t2/2 +/82t2/2 + /w2 t  (5.26) 
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a real-time method of calculating the Wigner distribution 
and the analytic signal. Choi and Williams [51] devised a 
discrete version of the exponential distribution. An alter- 
native approach has been used by Boudreaux-Bartels and 
Parks[38], [41],whoapproximated the Fourier integral using 
spline approximations. 

A new and unified approach to the discrete Wigner dis- 
tribution has recently been given by Peyrin and Prost [155], 
which naturally reduces to and preserves the properties of 
the continuous case. Starting with the relation for the sam- 
pled signal i( t)  in terms of the continuous signal s(t), 

i(t) = C s(nT)6( t  - nT) (5.32) 

they substitute into the continuous Wigner distribution and 
obtain the discrete version for the time variable 

n 

M n ,  w )  = s*((n - 2 k ) ~ ) s ( k ~ ) e - / ” ‘ ~ ~ - ” ) ~  . (5.33) 

Equation (5.33) retains the frequency as a continuous vari- 
able.The identical procedurecan be used toderivethecase 
when frequency i s  discrete and time is  continuous. They 
also generalize to the case where both time and frequency 
are discrete. Their approach is  general and can undoubt- 
edly be applied to other distributions. 

Amin [9] has given explicit recursion relations for the cal- 
culation of the discrete Wigner distribution and discrete 
smoothed Wigner distribution. 

F. Smoothed Distributions 

The major motivations for smoothing the Wigner distri- 
bution are that for certain types of smoothing, a positive 
distribution is obtained [34], [47], [66], and that many of the 
so-called artifacts illustrated before are suppressed. The 
fundamental idea i s  to smooth the Wigner distribution by 
the double convolution 

Soto and Claverie [I791 have given a concise summary of 
the effects of smoothing with a Gaussian for quantum 
mechanical distributions, and their results can readily be 
transcribed into signal analysis language. The global expec- 
tation values of frequency and time are the same for the 
Wigner and the smoothed Wigner distributions. That is not 
the case for the second global moments where we have 
( w ~ ) ~  = (w2>,,, + la and similarly for ( t 2 ) .  The higher 
moments are also changed, which i s  a reflection that the 
marginals are not preserved. Soto and Claverie show that 
smoothing very often gives erroneous answers in the quan- 
tum mechanical case. 

Garudadri et a/. [81] have made important contributions 
in understanding the effects and limitations of smoothing. 
They show that smoothing causes loss of phase informa- 
tion. However, they show that partial smoothing can be of 
advantage. 

Amin [8] has obtained conditions for the selection of time 
and lag window for smoothing the Wigner distribution and 
showed the relation with the autocorrelation function. 

The recent work of Andrieux et al. [IO] has made signif- 
icant strides toward utilizing smoothing effectively. They 
consider optimal smoothing of the Wigner distribution to 
be that which preserves as much as possible of the basic 
characteristics of the Wigner distribution. They argue that 
the smoothing should involve regions of the time-fre- 
quencyplanewhich areassmall as possibleandyet still lead 
to a positive distribution. They obtain general conditions 
for this minimum smoothing in terms of the rate of change 
of the phase for special signals of the form s(t) = e’+“’. 

Nuttall [146], [ I 47  has considered smoothing with a more 
general Gaussian form, 

with 

(5.37a) 

Ws(t, U )  = L( t  - t’, w - U ’ )  W(t’, U‘)’ dt’ dw’  (5.34) s 
where L is a smoothing function. It i s  hoped that a judicious 
choice of L will result in a new distribution with desirable 
properties. We stress that if L is taken to be independent 
of the signal, then the only way to obtain a positive distri- 
bution i s  by sacrificing the marginals. The most common 
smoothing function used i s  a Gaussian, 

(5.35) 

and it has been known for a long time in the quantum lit- 
erature [34], [47], [66], [118]-[120], [142], [I811 that for certain 
values of a and p, a positive distribution i s  obtained. The 
condition i s  that [47l, [66] 

ap 2 1. (5.36) 

More general smoothing functions have been considered 
in Bertrand et a/. [23], where they showed that a sufficient 
condition for positivity is  that the smoothing function be 
a Wigner distribution of any normalized signal. Janssen [IOO] 
and Janssen and Claasen [I011 considered smoothing of the 
general class of distributions, Eq. (4.1), with a Gaussian. In 
Section VI we discuss the spectrogram which can be viewed 
as a smoothing procedure. 

1 
4 Q = - - c 2  (5.37b) 

and has shown that the resulting distribution will be pos- 
itive if Q 5 1, that is, if 

1 ap 2 - 
1 + c2‘ 

(5.38) 

He points out that this smoothing function need not be a 
Wigner distribution function of some signal, unless Q = 1. 
He has derived a number of interesting alternative expres- 
sions for the smoothed Wigner distribution and showed 
how smoothing can be optimized in advantageous ways. 

Choi and Williams [51], Nuttall [146], 1147, and Flandrin 
[76] have found the ambiguity function plane to be a very 
effective way of finding kernels. 

Although we havediscussed smoothing in the section on 
the Wigner distribution, this i s  really a distribution-inde- 
pendent process in the sense that smoothing adistribution 
with one smoothing function is  equivalent to smoothing 
another distribution with a different smoothing function. 
The end result i s  the same and is a member of the bilinear 
class. In particular i f  P, i s  smoothed with the smoothing 
function Ll(t’, U’; t, w )  to obtain PL,, 

PL,(t, w )  = s s  P,(t’, w’)L,(t’, U’; t, w )  dt’ dw’ (5.39a) 
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the same smoothed distribution can be obtained from dis- 
tribution f2  with smoothing function L2(t’, U’; t ,  U), 

fL,(t, W )  = P,,(t, W )  = f2( t :  w ’ ) L ~ ( ~ ’ ,  U’; t ,  W )  dt’ d d  

(5.39b) 
s s  

if the smoothing functions are related by 

~ , ( t ” ,  0”; t ,  W )  = g(t” - t’, U” - U ’ )  

. L,(t’, w’; t ,  w )  dt’ do’ 
SS 

(5.39c) 

where g(t, U )  i s  defined by Eq. (4.65). 

G. Other Properties and Results 

Positivity: We have seen that the Wigner distribution is 
manifestly positive for the Gaussian signal, Eq. (5.15). In fact 
that i s  the only signal for which the Wigner distribution i s  
positive,aswasshown by Hudson [93]and Piquet[157]. Soto 
and Claverie [I801 have proved i t  for the multidimensional 
case. 

Modulation and Convolution: Consider the Wigner dis- 
tribution of the product of two signals, 

s(t)  = s,(t)s2(t) .  (5.40) 

To write it in terms of the Wigner distribution of the indi- 
vidual signals, substitute the signal into Eq. (5.1) and use the 
inverse relations of Eq. (5.5) to obtain [54] 

W(t, w)  = W,(t, w‘)WZ(t, w - U’) dw’. (5.41) s 
For the case of convolution where 

s(t) = s,(t‘)s,(t - t‘) dt‘ or S(w) = Sl(w)S2(w) 

(5.42) 
s 

we immediately get (by symmetry) that 

W(t, w)  = W,(t’, w)  W2(f’ - t ,  0) dt’. (5.43) 

Moyal Formu1a:An interesting relation exists between the 
overlap of two signals and the overlap of their Wigner dis- 
tributions, 

s 
11 S l ( f ) S 2 + ( f )  d t r  = 2a S Wdt, w)  WZ(t, w)  dt dw. (5.44) 

This was first shown by Moyal 11431. janssen [98] showed 
that there are an infinite number of other distributions with 
this property. The requirement i s  thatthe kernel satisfy 
r)I2 = 1. In the case where this is not so we have 

. K(t - t’, w - w’) dt dw dt’ dw’ 
(5.45) 

where 

Some have made Moyal’s formula a requirement of dis- 
tribution, but it i s  not clear why that should be so. As Jans- 
sen [98] pointed out, it has a certain appeal in quantum 
mechanics but i s  ”perhaps not really necessary for signal 

analysis.” In fact it i s  not really used in quantum mechanics 
either. Of course, the inner product i s  afundamental quan- 
tity in signal analysis and quantum mechanics, and what 
oneneeds isawayto relate i t tothe respectivedistributions. 
Equation (5.45) does so and there i s  no particular reason 
why the relation has to be of the form given by Eq. (5.44). 
We note that Moyal’s formula has been found to be useful 
in detection problems [781, (1171, [311. 

Performancein Noise:The behavior of the estimate of the 
Wigner distribution for a deterministic signal in zero mean 
additive stationary noise has been analyzed by Nuttall [146]. 
He obtains explicit expressions for the mean Wigner dis- 
tribution (ensemble average over all possible realizations 
of the noise) and its variance. Since it i s  assumed that the 
noise i s  additive, the signal and noise process i s  

x( t )  = s ( t )  + n(t). (5.47) 

As the noise term is stationary and does not decay to zero 
at infinity, x( t )  i s  weighted by a known deterministic func- 
tion v(t), which may be chosen advantageously depending 
on the circumstances. The weighted process i s  

(5.48) 

The Wigner distribution can therefore be written as the 
convolution, with respect to frequency, of the distribution 
of v(t) with the distribution of s(t)  + n(t), as per Eq. (5.41). 
The Wigner distribution of s(t) + n(t) consists of four terms, 
namely,thedistributionof thesignal, thedistributionof the 
noise, and the two cross terms which are linear in the noise. 
The linear noise terms ensemble average to zero because 
we are dealing with zero mean noise. Therefore the mean 
Wigner distribution i s  

y(t) = v(t )x( t )  = v(t)[s(t) + n(t)l. 

W,(t, w )  = W,(t, w‘)[W,(t, w - w’) + WJt ,  w - U’)] dw’ 

(5.49) 

where overbars denote an ensemble average over all pos- 
sible realizations of the noise. 

The mean Wigner distribution of the noise can be sim- 
plified for stationary noise. Namely, the noise covariance 
C(t) i s  a function of the difference of the times, 

s - 

C(t’ - t )  = n(t)n*(t’) (5.50) 
and hence 

(5.51) 

= C(w - U’) (5.52) 

where G(w) i s  the power density spectrum. The mean Wig- 
ner distribution of y( t )  i s  therefore 

- 
W,(t, 0) = J W,(t, w’)[W,(t, w - U’) + G(w - w’)l dw’. 

(5.53) 

With the further assumption that n(t)  i s  a Gaussian with 
n(t)n(t’) = 0, Nuttall (1461 obtains an explicit expression for 
the variance of W,. He shows that for any noise spectrum, 
thevariancewill be infinite if the signal is not weighted, that 
is, if v(t) = 1 for al l  time. Moreover, he shows that for the 
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case of white noise (power density constant for all fre- 
quencies) the variance is infinite for any weighting func- 
tion. To have finite variance, the frequencies outside the 
band of the signal must be filtered out. 

Other Derivations and Properties: The Wigner distribu- 
tion can be derived by different methods. A particularly 
interesting one using the Radon transform was given by 
Bertrand and Bertrand [22], who also studied the behavior 
of these distributionsfor broad-band signals. Kobayashi and 
Suzuki [I101 have shown that for mono-component signals 
the Wigner distribution may give rise to side lobes. 

General reviews of the Wigner distribution have been 
given by Hillery et a/. [89], Mecklenbrauker [141], Boashash 
[26], [29], and Boudreaux-Bartels [41]. 

VI. SPECTROGRAM AND AMBIGUITY FUNCTION 

A. Short-Time Fourier Spectrum and Spectrogram 

The spectrogram [5], [61, [681, [75], [ I l l ] ,  [1121, [1261, [1501, 
[151], [158], [163], [164], [I741 has been the most widely used 
tool for the analysis of time-varying spectra. The concept 
behind it is simple and powerful. If we want to analyze what 
i s  happening at a particular time, then we just use a small 
portion of the signal centered around that time, calculate 
its energy spectrum, and do i t  for each instant of time. Spe- 
cifically, for a window function h(t) centered at t, we cal- 
culate the spectrum of s(t')h(t' - t), 

e-/""s(t')h(t' - t )  dt' (6.1) 

which i s  the short-time Fourier transform. The energyden- 
sity spectrum or spectrogram is  

(6.2) 

which can be considered as the energy density at points t 
and W .  The window function controls the relative weight 
imposed on different parts of the signal. Bychoosingawin- 
dow that weighs the interval near the observation point a 
greater amount than other points, the spectrogram can be 
used to estimate local quantities. Depending on the appli- 
cation and field, different forms of display have been used. 
The most common display is  a two-dimensional projection 
where the intensity i s  represented by different shades of 
gray. This is possibleforthe spectrogram, because it is man- 
ifestly positive. The earliest application was used to dis- 
cover the fundamental aspects of speech. The mathemat- 
ical description of the spectrogram is  closely connected to 
theworkof Fano[72]and Schroederand Atal[175], although 
their approach was from the correlation point of view. There 
have been many modifications [ I l l ] ,  [I121 of the spectro- 
gram, and an excellent comparison of the different 
approaches i s  presented by Kodera, Gendrin, and De- 
Villedary [112]. Altes [6] has given a comprehensive analysis 
of the spectrogram and derived a number of interesting 
relations pertinent to the issues we are addressing in this 
review. 

Another perspective i s  gained if we express the short-time 
Fourier transform in terms of the Fourier transforms of the 
signal S(o) and window H(w), 

e/""S(w')H(w - U') dw' (6.3) 

which byanalogywith the precedingdiscussion can be used 
to study the behavior of the properties around the fre- 
quency point w. This is  done by choosing a time window 
function whose transform is  weighted relatively higher at 
the frequency w. 

The more compact or peaked we make the window in the 
time domain, the more time resolution i s  achieved. Simi- 
larly, if we choose a window peaked in the frequency 
domain, high-frequency resolution i s  obtained. Because of 
the uncertainty principle, both h(t) and H(w) cannot be made 
arbitrarily narrow; hence there is  an inherent tradeoff 
between time and frequency resolutions in the spectro- 
gram for a particular window. However, different windows 
can be used for estimating different properties. 

The basic properties [68], [126], [ I l l ] ,  [I121 and effective- 
ness of the spectrogram for a particular signal depend on 
the functional form of the window, although we expect that 
the estimated properties are not too sensitive to the details 
of the window. Indeed one would hope that the results are 
in some sense window independent. As an illustration con- 
sider calculating the first conditional moment of frequency 
by using Eq. (4.24) in order to estimate the instantaneous 
frequency. If we write the signal in terms of its amplitude 
and phase as in Eq. (4.26), and similarly for the window 

h(t) = Ah(t)e/qh(r) (6.4) 

then the first conditional moment i s  calculated to be 

where P,(t) i s  the marginal distribution in time, 

Pl(t) = 'j lS,(o)12 dw = 'j A*(t')A;(t' - t )  dt'. (6.6) 

This may be derived directly or by using Eq. (4.251, with the 
kernel of the spectrogram to be given by Eq. (6.17). If dif- 
ferent windows are used, different results are obtained for 
(U) , .  lfthewindow isnarrowed in such awayastoapproach 
a delta function [123], A:(t) + 6(t), then P(t) -, A2(t). Using 
Eq. (6.5) for real windows, the estimated instantaneous fre- 
quency approaches the derivative of the phase 

+ cp'(t). (6.7) 

We note, however, that although the average approaches 
the derivative of the phase, its standard deviation 
approaches infinity [123]. This is due to the fact that as 
Ai(t) + 6(t), the modified signal s(t')h(t' - t)  is very narrow 
as a function of t' and hence has a large spread in the fre- 
quency domain. 

The energyconcentration of the spectrogram in the time- 
frequency plane is illustrated effectively by the following 
example [112], where we have been able to put the final 
result in a revealing analytic form. For the signal we take 
an amplitude-modulated linear FM as given by Eq. (5.15) (we 
take wo = 0 for convenience) and choose the window to be 

The short-time Fourier transform can be calculated ana- 
lytically and, after some algebra, the energy density spec- 
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trum can be written in either of two forms, ( 4 . 1 2 ~  

P&, w )  = - (6.9) (6.20) 

-- - P2(4 ( f ) " ] 2 / 2 4  (6.10) 

where P,(t) and P2(w) are the marginal distributions of time 
and frequency, respectively, 
r 

(6.12) 

and where 

(6.13) 

(6.14) 
ap - ba 

a(a2 + b2) + a(a2 + P2) (0, = 

1 1 (0 + b)2 
U: = - (01 + a) + -___ 2 2 0 1 + a  

(6.15) 

(6.16) 
1 (01 + a)2 + ( f i  + bI2 
2 a(a2 + b2) + a b 2  + P 2 ) '  

= - 

From Eqs. (6.9) and (6.10) we see that for a given time, the 
maximum concentration i s  along the estimated instanta- 
neous frequency and that for a given frequency, the con- 
centration i s  alongtheestimatedtimedelay. If wewant high 
time resolution, which will give a good estimate of the 
instantaneous frequency, we must take a narrow window 
which i s  accomplished by making a large. From Eq. (6.5) we 
see that then ( U ) ,  -+ f i t, as expected from our previous dis- 
cussion. 

Properties of the Spectrogram and Kernel: As previously 
mentioned, the spectrogram i s  a member of the class given 
by Eq. (2.4). Expanding Eq. (6.2) and comparingwith Eq. (2.4), 
we see that the kernel that produces the spectrogram i s  [56] 

which i s  related to  the symmetrical ambiguity function (see 
next section) of the window. It can also be expressed in 
terms of the Fourier transform of the window, 

Equation (6.17) i s  a very convenient way to  study and 
derive the properties of the spectrogram. For example, to 
see whether energy can be preserved, we examine the ker- 
nel at 8, 7 = 0, as per Eq. (4.14), 

(6.19) 

This should be equal to  1 if we want the total energy to be 
preserved, and that can be achieved if the window i s  nor- 
malized to 1. To examine whether the marginals are sat- 
isfied we examine the conditions given by Eqs. (4.10) and 

(6.21) 

To have the correct marginals, both of these quantities 
should be equal to 1. The onlywaywe can makeds(8,0) equal 
to 1 i s  if we choose a window whose square approaches a 
delta function. The closer it approaches a delta function, 
the closer the time marginal of the spectrogram will 
approach the instantaneous energy. However, for a narrow 
window, the Fourier transform will be very broad and the 
spectral energy density wil l be represented poorly. 

We have already given the first conditional moment of 
frequency for a given time, Eq. (6.51, and showed its rela- 
tionship to  the instantaneous frequency. A similar result 
holds for the time delay. If the Fourier transforms of the 
signal and the window are written as 

the conditional expected value of time for a given fre- 
quency is 

( t ) ,  = -- B 2 ( ~ ' ) B i ( ~  - w')[$ ' (w')  - $;(a - U')] dw' 

(6.23) 

P2(w) I S  

where P2(w) i s  the marginal distribution in time, 

P2(w) = 1 B2(w')BL(w - U' )  dw'. (6.24) 

If the window is narrowed in the frequency domain, then 
a similar argument as before shows that the estimated group 
delay goes as ( t ) ,  + -$ ' (U)  for real windows that are nar- 
row in the frequency domain. 

One can perform a further integration of the conditional 
moments to  get the mean time and mean frequency of the 
signal. They are given by 

( t ) l S  = ( t > ( s  - ( f ) ( h  (6.25) 

( w > l s  = ( w > l s  + ( w > ( h  = (a'(t)>ls + (ai(t)>Ih (6.26) 

where the subscript S signifies that we are using the spec- 
trogram for the calculation and the subscripts s and h indi- 
cate calculation with the signal or window only, that is, with 
A2(t) or with Ai(t ) .  The mean value of the window has a very 
determined effect on these global quantities. If the window 
i s  chosen so that i t s  mean time and frequency are zero (e.g., 
by choosing a window symmetrical in time and frequency), 
then theaverageof the spectrogram will be identical to that 
of the window, irrespective of i ts  shape. However, the sec- 
ond global moment and the standard deviation wil l depend 
on the window characteristics. 

Similar considerations apply to  the covariance. The first 
joint moment i s  

( t w > ( s  (ta'(t)>ls - (tpi(t))(h - (t>(h((O'(t))ls 

(6.27) 

and using Eqs. (6.25) and (6.26) we see that the covariance 
can be written in  the form 

cov (tu)(, = cov  ( tU) ls  - cov (tw)lh. (6.28) 

964 PROCEEDINGS OF THE IEEE, VOL. 77,  NO. 7 ,  JULY 1989 



This shows that the covariance of the energy density spec- 
trum is the difference between the covariance of the signal 
and that of the window. 

lnversion and Representability: The inversion problem for 
the spectrogram poses no new difficulties and the discus- 
sion of Section IV regarding inversion applies. To deter- 
minewhether a particular window function leads to a spec- 
trogram from which a signal can be recovered, one 
calculates the kernel by way of Eq. (6.17) and applies the 
general criteria of Nuttall [I481 as discussed in  Section IV-B. 

Comparison with Bilinear Distributions Satisfying the 
Marginals: The spectrogram has a simple intuitive inter- 
pretation and by choosing appropriate windows, the phys- 
ical parameters of the signals can be measured or esti- 
mated. However, one must manipulate the window 
depending on the quantities being estimated. For example, 
if one wants to  obtain accurate results for both the instan- 
taneous frequency and the time delay, different windows 
must be used. Also the optimum window to use wil l in  gen- 
eral depend on time [14], [183]. On the other hand, as we 
have seen,for someof the bilinear distributions, the instan- 
taneous frequency and time delay are obtained exactly by 
calculating the conditional averages, and no decisions with 
respect to  the windows have to  be made. This is an impor- 
tant advantage afforded by distributions like the Wigner, 
which has been used with considerable profit to estimate 
the instantaneous frequencyof a signal. However, the spec- 
trogram has the advantage that it is always positive. The bi- 
linear distributions which give the proper marginals are 
never positive for an arbitrary signal. Also, the results they 
give for other conditional moments can very often not be 
interpreted [56]. The relative merits and the usefulness of 
these distributions are developing subjects and as we gain 
experience with a variety of distributions, their advantages 
and drawbackswill beclarified. It isvery likelythat different 
distributions should be used for different signals and for 
obtaining different properties of a signal. 

For comparison we list in  Table 3 some of the important 
properties of the spectrogram and compare them to the 
bilinear distributions which satisfy the marginals and sat- 
isfy Eqs. (4.28) and (4.4713). 

Relation to Other Distributions: Historically the devel- 
opment of the spectrogram and bilinear distributions of the 

type discussed in Section I evolved separately and were 
motivated by different approaches and physical arguments. 
Only recently has the connection between them been 
appreciated. In  the quantum context Bopp [34] and Kurysh- 
kin et al. [118]-[I201 developed the theory of spectrograms 
as an alternative approach to  the Wigner distribution. Per- 
haps the earliest connection between the spectrogram and 
other distributions, pointed out by Ackroyd [2], [3] and later 
used by Altes [6], is the relation with the Rihaczek distri- 
bution, 

Ps(t ,  w )  = e#’, w’)eh(t’ - t ,  w -U ‘ )  dt’ dw‘ (6.29) 

where es(t, U )  and eh@, w )  are the Rihaczek distributions of 
the signal and window functions, respectively. The spec- 
trogram can be thought of as the time-frequency distri- 
bution of the signal smoothed with the time-frequencydis- 
tribution of the window. Mark [I381 and Claasen and 
Mecklenbrauker [56] pointed out a similar relation with the 
Wigner distribution, 

s s  

f s ( t ,  U )  = w,(t’, w’)Wh(t‘ - t, w - U‘ )  dt‘ dw’.  (6.30) 5s 
Many researchers working with the Wigner distribution, 
who have been unawareof Eq. (6.29), have implied that this 
shows some unique and important connnection between 
the spectrogram and the Wigner distribution. We now know 
that these relations are just special cases of the general rela- 
tion which connects any two different bilinear distribu- 
tions. 

In fact these two special cases can be generalized for other 
distributions, 

Ps(t, U )  = Ps(t’ ,  W ‘ ) P h ( t ‘  - t ,  w - U’ )  dt’ dw’ (6.31) 

for al l  kernels such that 4(-0,7)4(0,7) = 1, where P, and Ph 
are the distribution functions of the signal and the window, 
respectively. To show this, suppose M, and Mh are the char- 
acteristic functions of the signal and the window. Using Eq. 
(3.77) we have that 

s s  

Table 3 Comparison of Spectrogram with Distributions Satisfying Marginals and Eqs. 
(4.28) and (4.47b)* 

Property Spectrogram “Distribution” 
Total energy 1 1 

Time marginal Pl(t) 5 A2(t’)  AE(t’ - t )  dt’ 

(6.32) 

‘The signal and window are written as A(t) e’”“’and AJt) eiqh“’, respectively, and both are normalized to 1. Their Fourier trans- 
forms are expressed as B(w) el”“’ and B H b )  e’$“”’, respectively. The sybmols I s  and I h  indicate that the calculation i s  done 
with the signal or the window only. 
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The characteristic function of the spectrogram i s  

Ms(O, 7)  = 5 5 (St(w)(2e/ef+/'w dt dw 

(6.33) 

If we take the Fourier transform of both sides according to  
Eq. (3.30) to  obtain the distribution, then Eq. (6.31) follows. 
I f  d(-O, dd(8, t)  does not equal 1, then 

P,(t, w) = s 5 j 5 a t " ,  w") Ps(t', w') 

. Ph(t" + t' - t, -U'' + w - U')  dt' dt" dw' dw" 

(6.34) 

where 

B. Ambiguity Function 

The Woodward [202] ambiguity function has been an 
important tool in analyzing and constructing signals asso- 
ciated with radar. It relates range and velocity resolution, 
and the performance characteristics of a waveform can be 
formulated in  terms of it. By constructing signals having a 
particular ambiguity function, desired performance char- 
acteristics are achieved, at least in  theory. A comprehensive 
discussion of the ambiguity function can be found in [168], 
and shorter reviews of i t s  properties and applications are 
found in [67] and [177]. 

The connection between the ambiguity function and 
time-frequency distribution functions as discussed here 
has been recognized for a long time [108], [log]. Indeed 
Woodward [202] noted the connection with the Ville char- 
acteristic function. The similarities between the ambiguity 
function and pseudo-characteristic functions as discussed 
in Section I l l  are many. Having a connection between the 
two often helps to clarify relations. 

There are a number of minor differences in terminology 
regarding the ambiguity function. We shall use the defi- 
nition of [168], 

~ ( 0 ,  7) = 5 s*( t  - 7)s(f)e'" dt. (6.36) 

The symmetrical ambiguity function is defined [I681 by 

We note that very often the complex conjugate of (6.36) or 
its absolute value, or the absolute value squared, are called 
the ambiguity function. 

Comparing with Eq. (3.19) it is seen that the ambiguity 
function is  the characteristic function of the Rihaczek dis- 
tribution, and comparing with Eq. (3.40) we see that the sym- 
metrical ambiguity function i s  the characteristic function 
of the Wigner distribution. The mathematical and possible 
physical analogy between the two enhances the interpre- 
tation ofthepropertiesoftheambiguityfunction. Forexam- 
ple, the condition that x(0,O) = 1 i s  easily understood from 
a characteristic function point of view since it i s  a reflection 
of the fact that the distribution i s  normalized to  the total 

energy, which has been chosen to  be 1. The relation that 
x(0 ,  7)  = x*(-O,  -7 )  implies that the distribution i s  real. If 
we look at the column labeled characteristic function in 
Table2, we recognize that thoseare properties usuallyasso- 
ciated with the ambiguity function, and that in many cases 
the interpretation in terms of distributions i s  more trans- 
parent. The analogy can be extended by defining a gen- 
eralized ambiguity function through Eq. (3.77). Choi and 
Williams [51] have used them with profit to  analyze the 
effects of the kernel on the behavior of the distribution. 
Thereare many moreanalogies than we have indicated here. 
A number of excellent articles exploring the relationship 
between the ambiguity function and time-frequency dis- 
tributions can be found in  [56], [69], [187]. 

Some have argued that a particular distribution, such as 
thewigner, is"better"thantheambiguityfunction.Anum- 
ber of reasons are usually given, among them that the Wig- 
ner distribution i s  real while the ambiguity function is com- 
plex. This is a mistaken view for the following reasons. 
Characteristic functions are very often much more reveal- 
ing than the distribution. Furthermore they are very useful 
in calculation as, for example, to  calculate the mixed 
moments. The properties of a distribution are often easier 
to  determine from the characteristic function than from the 
manipulation of the distribution. Also, the ambiguity func- 
tion plane is a very effective means for choosing kernels 
[51], [146], [147], [76]. Finally we point out that the charac- 
teristic function has been a main tool for obtaining these 
distributions. 

VII. TIME-FREQUENCY FILTERING AND SYNTHESIS 

If the concepts and methods of filter theorycould be gen- 
eralized to  the time-frequency plane, it would offer a pow- 
erful tool for theconstruction of signals with desirable time- 
frequency properties. However, time-frequency filtering 
presents uniquedifficultieswhich have not been fullyover- 
come. Perhaps the first attempt toobtain input-output rela- 
tionsfor a joint quasi-distribution was by Liu [127],who used 
the Pagedistribution. Hecalculated theoutput relations for 
a number of causal linear systems and obtained interesting 
bounds on the output distribution. Subsequently Bastiaans 
[17], [I81 and Claasen and Mecklenbrauker [56] have 
obtained the transformation properties for the Wigner dis- 
tribution. Eichmann and Dong [70] formulated a general 
optical method for time-frequency filtering and produced 
methods that may be applied to  many distributions. 

AsSalehandSubotic[173] have pointedout, unlikeastan- 
dard transfer function, the output for these bilinear dis- 
tributions is not a simple multiplicative function of the input 
distribution. As a matter of fact, the output distribution will 
almost always not be representable, that is, no signal will 
exist that will produce it. There are two qualitatively dif- 
ferent reasons why distributions are not representable. 
They can be categorized into distribution-independent and 
distribution-dependent reasons. For the sake of simplicity 
we restrict ourselves to distributions that satisfy the mar- 
ginals. 

1) Distribution-lndependent Conditions: From a poten- 
tial candidate for adistribution P(t, a), one can calculate the 
two marginals 

P,(t) = 5 P(t, W) dw, P,(w) = 5 P(r, U )  dt. (7.1) 
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Now for the distribution to  be representable, PI and P2 must 
be the absolute squares of functions that are Fourier trans- 
form pairs of each other, that is, there must exist a signal 
s( t )  whose Fourier transform is S(w), such that Pl ( t )  = ls(t)I2 
and P2(w) = (S(w)I2. An example of nonrepresentability, as 
pointed out by Saleh and Subotic [173], would be a distri- 
bution that produced marginals which are nonzero only in 
finite regions. Such marginals could not produce Fourier 
pairs since they are time and band limited. 

2) Distribution-Dependent Conditions: The above re- 
quirements are clear and within the experience of working 
with Fourier transforms. The second set of reasons depend 
on the functional relationship between thedistribution and 
the signal, and reflect the peculiarities of the distribution. 
Thus the design of time-variant transfer functions cannot 
be based solely on physical grounds but must take into 
account the peculiarities of the distribution, and unfor- 
tunatelyeach distribution has itsown peculiarities. To illus- 
trate these difficulties, we give some examples. Suppose 
that for an input Wigner distribution function the transfer 
function cutsa strip parallel to thefrequencyaxisfor afinite 
time interval, indicating silence at all frequencies. The 
resulting distribution i s  never representable, although what 
we have done to it, namely, asked for some silence, is cer- 
tainly reasonable. Is  the nonrepresentability an indication 
of some violation of physical impossibility? No, it is merely 
a peculiarity of the Wigner distribution. For a more dra- 
matic example, suppose we have the Wigner distribution 
for a Gaussian signal. If we multiply the distribution by w2, 
dowegeta representabledistribution? No. In fact ifwemul- 
tiply it by any positive function other than a Gaussian, we 
can be certain that the resulting distribution i s  not proper. 
The reason is that the Gaussian signal i s  the only one that 
gives a positive Wigner distribution, and multiplying the 
distribution with another positive function which is not 
Gaussian cannot result in any Wigner distribution. Now if 
we use the Rihaczek distribution for the silence example, 
the resulting distribution is a proper Rihaczek distribution. 
However, if we multiply a Rihaczek distribution by a func- 
tion of time and frequency which i s  not a product of func- 
tions of time and frequency, the output will never be a 
Rihaczek distribution. Again, this i s  a peculiarity of the dis- 
tribution and not a reflection of some inherent physical 
impossibility. Hence procedures that appear reasonable, as 
reflected by reasonable time-variant transfer functions, 
often do notwork for a particulardistribution, but maywork 
for another. The failure is not due to any violation of phys- 
ical law, but just a reflection of the peculiarities of the dis- 
tribution. How to recognize and deal with these peculiar- 
ities i s  one of the major stumbling blocks. The above 
difficulties have been investigated for only a few distri- 
butions, and it is possible that there may be distributions 
for which the difficulties do not arise. 

These problems not withstanding, Saleh and Subotic [I731 
simplified matters considerably. By analogy with the stan- 
dard transfer function method they multiply the input dis- 
tribution by a time-variant transfer function to  obtain the 
output. Conceptually this i s  an ideal method as it i s  simple 
and direct. Specifically, they write 

where Po and P, are the output and input distributions, 

respectively, and H i s  the time-varying transfer function. In  
general the output distribution will not be representable, 
and they present two methods to  synthesize the signal from 
the output distribution. One technique i s  based on using 
Eq. (5.6), irrespective of whether or not the signal is rep- 
resentable, and the other finds a signal that reproduces a 
distribution as closelyas possible, in the least-square sense, 
totheoutput distribution.The method of Saleh and Subotic 
is appealing because it conforms as much as possible with 
our current intuitive notions of what we would want time- 
frequency filtering to  do. As they point out, their approach 
applies to  other time-frequency distributions. It would be 
of interest to  investigate for which distributions their pro- 
cedure can be implemented in  an optimal manner. 

Other innovative methods have been devised for the syn- 
thesis problem. Boudreaux-Bartels and Parks [39]-[41] have 
devised a number of efficient methods for the synthesis of 
the Wigner distribution, and other methods have been 
given by Yu and Chang [203], [204] and Boashash et al. [26]. 

Input-Output Relations: We now summarize the input- 
output relations for a general time-variant linear transfor- 
mation of the signal, 

so(t) = h(t, t ' )s,( t ' )  dt' (7.3) 

where h(t, t ' )  is the impulse response [172], [205]. In such 
a case the relation between the input distribution and the 
output distribution can always be written as 

Po(t, w )  = K(t, U;  t ' , w ' )P / ( t ' ,  U ' )  dt' dw'. (7.4) SS 
A straightforward calculation yields 

K( t ,  w, t ' ,  U ' )  

. du dr d0 du' dr' do'. (7.5) 

This simplifies considerably when particular kernels are 
considered. For the Rihaczek distribution we have 

where 

h(t, t ' )e~wf -~w" '  d t  dt'. (7.7) 

We note that K is a two-dimensional Rihaczek distribution. 
For the Wigner distribution we have 

which i s  a two-dimensional Wigner distribution [17], [18]. 
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VIII. OTHER TOPICS: INSTANTANEOUS FREQUENCY, 
QUANTUM MECHANICS, AND UNCERTAINTY PRINCIPLE 

A. Instantaneous Frequency and Analytic Signal 

Theconcept of "instantaneous" frequency has a long his- 
tory in physics and astronomy. Historically the method- 
ology and description of instantaneous frequency has not 
always been associated with time-frequency distributions 
ora time-varyingspectrum.Acomprehensive theoryof joint 
time-frequency distributions would be able to  encompass 
and clarify the concept of instantaneous frequency, so it i s  
important to appreciate the work that has been done along 
theselines. ltwasArmstrong's[Il]discoverythat frequency 
modulation for radio transmission reduces noise signifi- 
cantly, which produced a concerted effort to understand 
and describe the mathematical and conceptual description 
of frequency modulation and instantaneous frequency. 
Early comprehensive works on the analysis of frequency 
modulation were those of Carson and Fry [45] and Van der 
Pol [192], who defined instantaneous frequency as the rate 
of change of the phase of the signal. This definition implies 
that we have some procedure for forming a complex signal 
from a real one. In  general there are an infinite number of 
complex signals whose real part is a given real signal. A 
major step was made by Cabor [80], who from the obser- 
vation that both sin wt and cos wt transform into an expo- 
nential e'"' if we use only their positive spectrum, gener- 
alized to the arbitrary case with the prescription to  
"suppress the amplitudes belonging to negative frequen- 
cies and multiply the amplitudes of positive frequency by 
2."He noted that this procedure is equivalent to adding to 
the signal an imaginary part, which i s  the Hilbert transform 
of the signal. The positive frequencies are multiplied by 2 
to preserve the total energy of the original signal. To see 
how the Hilbert transform arises from the above prescrip- 
tion, suppose the signal i s  s(t) and its Fourier transform i s  
S(w). The signal z(t)whose spectrum is  composed of the pos- 
itive frequencies of S(w) i s  given by the inverse transform 
of S(w) using only the positive frequencies, 

Expressing S(w) in  terms of the signal s( t )  as per Eq. (1.3), 

z(t) = 2 lm 1 s(t')e-/"''elW' dt' d w  (8.2) 
277 0 

and using the fact that 

(8.3) lom elwx do = d ( x )  + - i 

z(t) = s(t) + j s, dt'. (8.4) 

we have 

The second part of Eq. (8.4) i s  the Hilbert transform of the 
signal, and z(t) i s  called the analytic signal. The derivative 
of the phase of the analytic signal conforms to  our expec- 
tations of instantaneous frequency for a wide variety of 
cases, particularly narrow-band signals. There has been 
considerable controversy over whether this represents the 
proper mathematical expression of instantaneous fre- 
quency, and a number of other definitions have been given 

[85], [178]. For example, one can define it in terms of the 
average number of zeros that a function crosses per unit 
time. 

For a real signal of the form A(t) cos [wot  + @(t)] the com- 
plex signal is often taken to beA(t)e/"o'f/m''', which is called 
the quadrature, or exponential, model. The conditions 
under which this complex signal i s  a good approximation 
to the analytic signal have been investigated [169]. Nuttall 
[I451 resolved the issue by defining the error between the 
exponential and the analytic signal to  be the energy of the 
difference of the two signals. He showed that the error will 
be zero if the spectrum of A(t)e'""' i s  single sided. It i s  not 
necessary for the signal to be narrow band. A convenient 
and useful theorem for the study of Hilbert transforms was 
given by Bedrosian [20]. It relates the Hilbert transform of 
a product of two signals to the Hilbert transform of each 
signal. 

"Instantaneous" frequency implies that we are dealing 
with a local concept, but to calculate the Hilbert transform, 
the signal for all time must be used. This paradoxical sit- 
uation was analyzed by Vakman [191], who set up mild and 
reasonable conditions for the formation of a complex signal 
and showed that these conditions lead to the analytic sig- 
nal. He points out that in reality only a small band around 
the instantaneous frequency, the "active band," i s  needed 
to approximate the analytic signal [4], [106], [191]. 

He makes the interesting observation that, very often, 
quantities defined globally can, under certain circutii- 
stances, be described advantageously by local concepts as, 
for example, i s  the case with electromagnetic waves, where 
in principle we are dealing with waves spread out through 
space, but under certain conditions, the light ray method 
i s  appropriate and useful. 

The identification of the derivative of the phase with the 
concept of instantaneous frequency must not be taken too 
literally. The relation of the derivative of the phase and the 
"frequency" that appears in the spectrum has been inves- 
tigated by Ville [194], Fink [74], and Mandel [131]. Consider 
at each instant keeping track of the instantaneous fre- 
quency and asking for the average frequency. That would 
be given by the time average 

(q'(t)>r = J (o'(t)Is(t)j2 dt (time average). (8.5) 

If we compare this to the mean frequency as defined by the 
spectrum, 

( W ) S  = w l . % ~ ) l ~  d w  (spectral average) (8.6) 

it i s  easy to  prove that they are identical, 

(a), = (q'(t))r (8.7) 

which argues for the identification of the derivative of the 
phase as the instantaneous frequency. However, if onecal- 
culates the second moments, the identification i s  no longer 
compatible because they are not equal. In  fact [741, [1311, 
[1941, 

( w 2 ) S  = ( p ' 2 ( t ) ) r  + J A'*(t) dt. (8.8) 

Also, the standard deviation of the spectral average i s  
u: = ( a 2 ) ,  - ( U ) : ,  and bya similar expression for the time 
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average, we have 

U: = U: + A’2(t) dt. (8.9) 

Mandel [I311 has emphasized that the derivative of the 
phase does not always coincide with the frequencies that 
appear in the spectrum, although the averages are equal, 
as per Eq. (8.7). In  fact it i s  very easy to  construct examples 
where the derivative of the phase of an analytic signal 
(whose spectrum consistsof only positive frequencies) may 
be negative at certain times. Of course one can define 
instantaneous frequency to  be the derivative of the phase, 
but the conceptual notion embodied in the phrase will not 
always be reflected in  the definition. We note that if there 
i s  no amplitude modulation, the two coincide, and we fur- 
ther note that the second term of Eq. (8.9) is identical to  the 
expected value of the local spread, as defined by Eq. (4.39). 

From the perspective of joint time-frequency distribu- 
tions, instantaneous frequency i s  defined as the average 
frequencyat a particular time, that is, the mean conditional 
moment of frequency. We have already seen that there are 
an infinite number of distributions which give the deriv- 
ative of the phase for the mean conditional value of fre- 
quency. The condition for this to  hold i s  given by Eq. (4.28) 
and i s  usually considered an important and desirable attri- 
bute of a distribution. However, we note that the result i s  
true for any complex signal, not just the analytic signal. One 
may argue that the condition on these distributions should 
be that the conditional moment of frequency be the deriv- 
ative of the phase for only certain types of signals, or it 
should be the derivative of the phase in some approximate 
sense. It can also be argued that the result should be the 
derivative of the phase of the analytic signal, even if the 
actual signal i s  used in  the calculation of the distribution. 
More fundamentally, a theory of time-frequency distri- 
butions should predict the proper expression for instan- 
taneous frequency and the ”answer” should not have to  be 
imposed. In addition we point out that some of the distri- 
butions which give the derivative of the phase for the first 
conditional moment give improper results for the second 
conditional moment, as discussed in Section IV. This indi- 
cates that we do not have a fully consistent theory. Con- 
siderable further research i s  needed to  clarify the relations 
between the instantaneous frequency, joint time-fre- 
quency distributions, and the result implied by the works 
of Ville, Fink, and Mandel, Eq. (8.9). 

From the practical point of view the question arises as to 
whether the actual signal or the analytic signal should be 
used when calculating a joint time-frequency distribution. 
Many have advocated using the analytic signal. There are 
three basic reasons for this advocacy. First, as we have dis- 
cussed, some distributions give the derivative of the phase 
for the conditional first moment. Hence it i s  argued that we 
should use the analytic signal because the instantaneous 
frequency i s  defined in terms of the analytic signal. If one 
wants to use these distributions for the estimation of the 
instantaneous frequencies, and that is certainly an impor- 
tant application, then the analytic signal should be used. 
Whileit istruethatadistributionoftheanalyticsignaldram- 
atizes the instantaneous frequency concentration for many 
signals, the question of what it hides of the original signal 
has not been fully addressed. We point out that when the 
analytic signal is used, the marginals of the original signal 

are not properlygiven. Second, the analytic signal does not 
have negative frequencies and therefore cannot cause 
interference terms with the positive frequencies. Although 
eliminating the negative frequencies does eliminate their 
overlap, it does not eliminate the interference of the pos- 
itive frequencieswith other positive frequencies. Therewill 
always be interference terms, no matter what part of the 
signal i s  eliminated, since that i s  an inherent property of the 
bilinear distributions.Thethird argumentfor usingtheana- 
lytic signal i s  that aliasing i s  eliminated and the sampling 
rate i s  reduced to the standard Nyquist rate [26]. 

B. Relation to Quantum Mechanics 

The fundamental notion of classical mechanics is that 
from a knowledge of the initial positions and velocities of 
a particle, and the knowledge of the forces, one can predict 
exactlywhat the position and velocityof the particle will be 
at a later time. The equation of evolution in classical 
mechanics i s  Newton’s second law of motion. The break- 
down of classical mechanics and the realization that the 
deterministic viewpoint i s  incorrect because the laws of 
nature only predict the probability where a particle wil l be, 
i s  one of the greatest intellectual achievements of human- 
kind. In  addition it has had profound practical conse- 
quences as evidenced by the modern devices based on 
quantum effects. The fundamental idea of modern physics 
i s  that wecan only predict probabilities for observables such 
as position and velocity, and that this i s  not a reflection of 
human ignorance but rather the way that nature operates. 
The probabilities are predicted by solving Schrodinger’s 
equation of motion, which gives the wave function of posi- 
tion at time t. The probability of finding the particle at posi- 
tion qat  time t i s  then the absolute square of thewave func- 
tion. Another dramatic departure of quantum mechanics 
from classical mechanics i s  that physical observables are 
represented by operators and not functions. The noncom- 
mutation of operators has profound consequences regard- 
ing the simultaneous measurability of observables. We 
should point out that in  quantum mechanics we may have 
an additional level of description. That i s  the case where we 
do not know, because of human ignorance, what the wave 
function is and assign a probability to the possible wave 
functions. This i s  done in quantum statistical mechanics 
and i s  similar to  the treatment of stochastic signal in signal 
theory. We emphasize that in quantum mechanics we are 
startingwith a probabilitydescription, but in signal analysis 
we are starting with a deterministic description. 

There is a partial formal mathematical correspondence 
between quantum mechanics and signal analysis. Histor- 
ically work on joint time-frequency distributions has often 
been guided by corresponding developments in quantum 
mechanics. Indeed the original papers of Gabor and Ville 
continuously evoked the quantum analogy. However, the 
analogy i s  formal only and because the interpretation is dra- 
matically different, one must be particularly cautious in 
transposing and interpreting results from one field to 
another. What may be reasonable in quantum mechanics 
does not necessarily make it resonable in signal theory. 
Indeed it i s  often preposterous in signal theory, as will be 
illustrated with a concrete example. 

The similaritycomes about because in quantum mechan- 
ics the probability distribution for finding the particle at a 
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certain position istheabsolute squareof thewave function, 
and the probability for finding the momentum i s  the abso- 
lute square of the Fourier transform of the wave function. 
Thus one can associate the signal with the wave function, 
time with position, and frequency with momentum. The 
marginal conditions are formally the same, although the 
variables are different. The first fundamental difference is 
that quantum mechanics i s  an inherently probabilistic the- 
ory. Its probabilistic interpretation is not aquestion of igno- 
rance but of the fundamental character of the physical 
world. In  signal theory, on the other hand, the signal i s  
inherentlydeterministic, and the absolute squareof the sig- 
nal i s  an intensitywith no probability connotations. We now 
come to the most important distinction. In quantum 
mechanics, physical quantities are always associated with 
operators. It is the fundamental tenet of quantum mechan- 
ics that what can be measured for an observable are the 
eigenvalues of its operator. This produces some seemingly 
bizarre results, which are nonetheless true and have been 
verified experimentally. It is the basis for the quantization 
of physical quantities and has no counterpart in signal the- 
ory. For a dramatic example, consider the sum of two con- 
tinuous quantities. In quantum mechanics the sum i s  not 
necessarily continuous. Specifically consider the position 
q and momentum p, which are continuous variables; in  
quantum mechanics q2 + p2 (appropriately dimensioned) 
i s  never continuous under any circumstances, for any par- 
ticle. It i s  always quantized, that is, it can have only certain 
values. The corresponding statement in signal analysis 
would be that time and frequency are continuous but that 

+ u2 (appropriately dimensioned) i s  never so, and of 
course that would be a ludicrous statement to  make in sig- 
nal analysis. Hence, even though there is a mathematical 
analogy with quantum mechanics, we cannot take the 
resultsof quantum mechanics over to joint time-frequency 
distributions indiscriminately. In Table4weoutline thefor- 
mal mathematical correspondence between signal analysis 
and quantum mechanics. 

C. Uncertainty Principle a n d  joint Distributions 

The uncertainty principle expresses a fundamental rela- 
tionship between the standard deviation of a function and 

the standard deviation of its Fourier transform. In partic- 
ular, the standard deviations are defined by 

(At)2 = 

(Aw)* = (W - Z ) * ) S ( W ) ~ ~  du (8.10) 

where: and ware the mean time and frequency. The uncer- 
tainty principle i s  

AtAu 2 1 (8.11) 

for any signal. In common usage At and AW are called the 
duration and the bandwidth of a signal. 

We would like to clarify the role of the uncertainty prin- 
ciple and its significance with regard to joint distributions. 
Wewill show that the uncertainty principle is a relationship 
concerning the marginals only and has no bearing on the 
existence of joint distributions. The phrase ”uncertainty” 
was coined in quantum mechanics, where its connotation 
is appropriate since quantum mechanics i s  an inherently 
probabilistic theory. In quantum mechanics the standard 
deviations involve the measurement of physical observa- 
bles. However, in nonprobabilistic contexts the uncertainly 
principle should be thought of as expressing the fact that 
a function and its Fourier transform cannot be made arbi- 
trarily narrow. 

The proper interpretation of the uncertainty relation in 
signal analysis has been emphasized by many. In his paper 
on the representation of signals, for example, Lerner [I241 
states that the uncertainty principle ’ I .  . . has tempted some 
individuals to  draw unwarranted parallels to  the uncer- 
tainty principle in quantum mechanics.. . The analogy i s  
formal only.” Equally to  the point i s  Skolnik [177]: ”The use 
of theword ‘uncertainty’ i s  a misnomer, for there i s  nothing 
uncertain about the ’uncertainty relation.’. . . It states the 
well-known mathematical fact that a narrow waveform 
yields a wide spectrum and a wide waveform yields a nar- 
row spectrum and both the time waveform and the fre- 
quency spectrum cannot be made arbitrarily small simul- 
taneously.” 

In both signal theory and quantum theory we have an 
uncertaintyprinciple. lnquantum mechanics it referstothe 
probabilistic aspects of measuring quantities, and the word 

(t - t)21s(t)12 dt  

s 

Table 4 Relationship Between Quantum Mechanics and Simal Analvsis* 

Quantum Mechanics 
(Inherently Probabilistic) 

Signal Analysis 
(Deterministic) 

Position 
Momentum 
Time 
Wave function 

q (random) 
p (random) 
t 
$(q, t )  

Time t 
Frequency w 
No correspondence 
Signal s ( t )  

1 @ ( p ,  t )  = - $(q, t )  dq Spectrum S(w) = - 1 s( t )  e-’‘“‘ dt 

Energy density ls(t)I2 

m I S  Momentum wave function 

Probability of position at time t l$(q, t)I2 
Probability of momentum at time t I@(p, t)1’ Energy density spectrum IS(w)l’ 
Expected value of position ( t )  = j tls(t)l’ dt  
Expected value of momentum ( w )  = j wlS(w)l’ dw  

Standard deviation of momentum up = J (p ’ )  - ( p ) ’  Bandwidth B = J ( w z )  - (U)’ 
Uncertainty principle CPUq 2 h / 2  Time-bandwidth relation BT 2 

*The formal mathematical correspondence i s  (position, momentum) Q (time, frequency). The wave function in  quantum mechanics depends on time, but 
this has no formal correspondence in  signal analysis. Planck’s constant h may be taken equal to 1. Quantum mechanics i s  an inherently probabilistic theory 
in contrast tosignal analysis, which isdeterministic. Hencewhile there i s  the formal mathematical correspondence, the interpretation of results isverydifferent. 
Both quantum mechanics and signal theory have another level of  indetermlnism where the wave function or the signal is  ensemble averaged. 

( q )  = I ql$(q, t)l’ dq 
( p )  = 1 pld(p, t)I2 dp 

Mean time 
Mean frequency 

Standard deviation of position uq = J(q ’ )  - (q)’ Duration T =  J(P) - ( t ) *  
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"uncertainty" connotes the right meaning. It i s  one of the 
most profound discoveries and refers to the measurement 
of physical quantities represented by operators that do not 
commute, such as position and momentum. In signal anal- 
ysis it applies only to the broadness of signals, which are 
related to each other by Fourier transforms, and i t  does not 

i s  sometimes stated that i f  one averages the Wigner dis- 
tribution over an area greater than that given by the uncer- 
tainty principle, we will get a positive answer. That i s  not 
the case. Many counterexamples have been given. 

Ix. AppLlcATloNs 
relate to measurement in the quantum mechanical sense. 
As Ackroyd [3] has emphasized, "There i s  a misconception 
that it i s  not possible to measure the t - f energy density 
of a given waveform and that this i s  a consequence of 
Gabor's uncertainty relation. However, the uncertainty 
principle of waveform analysis i s  not concerned with the 
measurement of t - f energy density distributions: instead 
it states that if the effective bandwidth of a signal i s  W then 
the effective duration cannot be less than about 1 /W (and 
conversely). . ." 

Additional confusion arises when the At and Au, which 
are used in the uncertainty principle to connote standard 
deviations or broadness, are misconstrued with the differ- 
ential elements of calculus. They are not the same, and the 
uncertainty principle does not say that we cannot make the 
differential elements as small as we like. The two uses of 
A should not be confused. 

We now address the question of the relationship of the 
uncertainty principle and joint distributions. Our point i s  
that it has no bearing on the question of joint distributions 
and relates to the product of the standard deviations of the 
marginals. To understand this, suppose we have a joint dis- 
tribution and wish to calculate the product (At)2(Aw)2. It 
would be 

(At)2(Aw)2 = s s  (t  - j ) 2 f ( t ,  w )  d t  dw 

. s s  (U - W ) 2 f ( t ,  w )  dt  dw (8.12) 

(8.13) 

This i s  the usual starting point in the derivation of the uncer- 
tainty principle, and hence the uncertainty principle fol- 
lows. This demonstration i s  rather trivial; however, since 
there i s  a general sense that the uncertainty principle has 
to do with correlations between measurements of time and 
frequency, the preceding steps force the reader to see that 
this is not the case. The uncertainty principle i s  calculated 
onlyfrom the marginals. Hence any joint distribution that 
yields the marginals will give the uncertainty principle. It 
has nothing to do with correlations between time and fre- 
quency or the measurement for small times and frequen- 
cies. What it does say i s  that the marginals are functionally 
dependent. But the fact that marginals are related does not 
imply correlation between the variables and has nothing to 
do with the existence or nonexistence of a joint distribu- 
tion. 

It is often stated that one cannot have proper positive 
distributions because that would violate the uncertainty 
principle. But it i s  well known that the Wigner distribution 
is positive for some signals. If positivity and the uncertainty 
principle were incompatible, i t  must be so for all cases. Fur- 
thermore it i s  possible to generate an infinite number of 
positive distributions which satisfy the marginals. Also, it 

There has been a considerable effort to apply these dis- 
tributions to almost every field where nonstationary signals 
arise. The purpose of the applications has varied consid- 
erably, from the simple graphic presentation of the results, 
with the expectation that they will reveal more than other 
methods, to sophisticated manipulation of the distribution. 
We will emphasize how these distributions have been 
applied, but we will not go into detail about the particular 
numerical techniques. The applications can be broadly cat- 
egorized according to three methodologies. First is cal- 
culating the distribution to see whether it does reveal more 
information than other tools such as the spectrogram. An 
example is the application to speech, where one hopes more 
of the fine points of speech such as transients and tran- 
sitions will be revealed. Second is to use a particular prop- 
erty of the distribution which clearly and robustly repre- 
sents the time-frequency content for that property, for 
example, correlating instantaneous frequency with phys- 
ical quantities one i s  trying to obtain. Third is to use the 
distribution as a carrier of the information of a signal and 
without concern as to whether the distribution truly rep- 
resents the time-frequency energy density. Many appli- 
cations do not fall clearly into the above categories, but i t  
is nevertheless useful to keep them in mind because the 
successor failureof adistribution in a particular application 
does not necessarily imply success or failure in a different 
application. For example, the Wigner distribution may be 
hard to interpret in the analysis of speech, but may be use- 
ful for recognition. For applications where the interpre- 
tation as true densities i s  not necessary, the violation of cer- 
tain properties, such as the marginals, may be acceptable. 

Perhaps the earliest application that took advantage of 
the Wigner distribution was the work of Boashash [35]. His 
method is based on correlating a physical quantity of the 
problem at hand with a feature in the Wigner distribution, 
usually the instantaneous frequency. The importance of 
Boashash's idea is that one does not have to rely on a full 
interpretation of the distribution as a joint density but only 
that some of its predictions need be correct. For example, 
as long as one isconfidentthatthe instantaneous frequency 
is well described by the distribution, the fact that other 
properties may not be i s  unimportant. His first application 
of this was to geophysical exploration. The basic idea i s  to 
send a signal through the ground, measure the resulting 
signal, and calculate the Wigner distribution. From the dis- 
tribution onedetermines the instantaneousfrequency,and 
from the instantaneous frequency one calculates the atten- 
uation and dispersion. This method has been used to study 
many diverse problems. Boashash etal. [27], [28] studied the 
absorption and dispersion effects in the earth. lmberger 
and Boashash [94], [95] have applied the method to analyze 
the temperature gradient microstructure in the ocean by 
relating the instantaneous frequency to the dissipation of 
kinetic energy. Bazelaire and Viallix [I91 have also used the 
Wigner distribution to obtain data to measure the absorp- 
tion and dispersion coefficients of the ground and have for- 
mulated a new understanding of seismic noise. 
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(a) (b) 
Fig. 8. ContourplotsofWignerdistributionfortheoutputofasimulated ultrasonictrans- 
ducer for various design parameters. The advantage of using a time-frequency distri- 
bution is that one can readily see the main features of the output. 
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Of particular significancewas theworkof Janseand Kaizer 
[97]. They developed innovative techniques and laid the 
foundation for the use of these distributions as practical 
tooIs.TheycalcuIated the Wigner distribution for a number 
of standard filters, and found it to  be a particularly powerful 
means of handling the inherently nonstationary signals 
encountered in loudspeaker design. 

In  the design of devices to  produce waves, time-fre- 
quency distributions are an effective and comprehensive 
indicator of the characteristics of the output. We illustrate 
this with the work of Marinovic and Smith [137], who used 
the Wigner distribution as an aid in the design and analysis 
of ultrasonic transducers. An ultrasonic transducer i s  a 
device for producing sound waves and is typically used as 
the source of waves in medical imaging, sonar, and so on. 
The most common means of producing high-frequency 
sound i s  by exciting a piezoelectric crystal such as a quartz. 
When mechanical stress is applied to  these crystals, the 
polarization i s  changed, producing an electric field. Con- 
versely when an electric field i s  applied, the crystal i s  
strained. By using an oscillating electric field the crystal i s  
made to  vibrate, producing acoustic waves in  the medium. 
The output of a transducer depends on many factors, such 
as shape, thickness, the electronic fields driving it, and the 
coupling with the medium. In designing a transducer one 
i s  interested in the output having certain desirable char- 
acteristics. Typically what i s  required is, for the output, to 
have a uniform time spread over the frequencies. Uniform- 
ity is desired so that there are no aberrations with respect 
to different frequencies acting in different ways. A number 
of simulation models have been devised which predict the 
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general characteristics of the output with the various 
parameters under the designer's control. The advantage of 
using a time-frequency distribution i s  that one can quickly 
and effectively see the effects of varying the parameters. In 
Fig. 8 we show various contour plots of the Wigner distri- 
bution of the output of a simulation program for designing 
transducers for three choices of design parameters. In Fig. 
8(a) the output has a very poor uniformity of energy in the 
various frequencies. In Fig. 8(b) there is considerable 
improvement, but nouniformityyet,and in  Fig.8(c)we have 
an ideal case, the output being quite uniform for the fre- 
quencies produced. The advantage of using a joint time- 
frequency distribution i s  that within one picture the char- 
acteristics of the transducer are readily discerned and one 
does not have to  do various independent time and fre- 
quency analyses. 

An example that illustrates the use of these distributions 
fordiscoveryand classification istheworkof Barryand Cole 
[I51 on muscle sounds. When a muscle contracts, it pro- 
duces sounds that can be picked up readily by a micro- 
phone. It has been discovered that these sounds are not 
due to the muscle vibrating as a simple string. The work of 
Barry and Cole [I51 and others i s  aimed at correlating the 
properties of the sound with the characteristics of the mus- 
cle. If one had agood understanding of thedifferent mech- 
anisms that are producing significant changes in the dis- 
tribution, one would potentially have an excellent 
diagnostic tool since these acoustic waves would provide 
a noninvasive diagnostic tool. Fig. 9 shows the distribution 
of Choi and Williams for two different sounds produced by 
a muscle. The first i s  produced during an isometric con- 

5.00 15.0 25.0 35.0 45.t 
TIME I MS 1 

(b) 

Fig. 9. Choi-Williams distribution for two different sounds produced by a muscle. (a) 
During isometric contraction. (b) When muscle is twitched. 
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traction and the second when the muscle is twitched. The 
general features are quite reproducible from muscle to  
muscle and hence reflect some general characteristics of 
muscle contraction. O n  a fundamental level these figures 
dramatically show that average frequencyor instantaneous 
frequency changes significantly during a muscle contrac- 
tion and gives an indication of the spread around the aver- 
age. The sounds have been correlated with characteristics 
of the muscle such as its stiffness. The important point from 
our perspective i s  that, as Barryand Cole[15] point out, these 
”time-dependent frequency changes in the acoustical sig- 
nals would be hard to  discern with standard frequency 
domain analysis.” 

The propagation of a signal through different media i s  a 
verycommon occurrence in  nature, and since it i s  generally 
accompanied by time delays and changes in frequencies, 
acombined time-frequencydescription i s  natural.The sim- 
plest propagation of a disturbance is one governed by the 
equation u,,(x, t )  = v2utt(x, t ) ,  where U is the physical quan- 
tity that i s  changing (e.g., pressure or electric field), x and 
t are position and time, respectively, and v i s  the velocity 
of propagation. If we start with a disturbance at t = 0 given 
by u(x, O), then the disturbance at a later time wil l be given 
by the same function, displaced by vt, that is, the disturb- 
ance will propagate with the same shape. Mathematically 
this i s  explained by observing that any function of the form 
u(x - vt) is a solution. Examples are electromagnetic waves 
in  free space and sound waves in  air (to a large extent). 
Indeed the reason that a person standing 10 ft away from 
an object sees and hears the same thing as a person 20 ft 
away is that the shape of the disturbance has not changed. 

However, a typical wave equation governing the prop- 
agation of a wave in a medium contains extra terms and 
does not admit solutions of the form u(x - vt) for an arbi- 
trary U .  The equation is a wave equation because it does 
admit propagating waves of the form e/(*wf-kxl. Only si- 
nusoidal waves propagate without change. One of the most 
important effects in  wave propagation is that the phase 
velocity may depend on the wavelength. Since an arbitrary 
disturbance can be decomposed into sinusoids by way of 
the Fourier transform and each will move at a different 
velocity, the recombination of them at a later time wil l not 
preserve the shape of the signal. This phenomenon, that 
sinusoidal waves of different frequencies propagate with 
different velocities, is called dispersion. The reason for this 
term is that the earliest discovered ramification was that a 
prism can “disperse” white light into different colors since 
they travel with different speeds in glass. If the velocity 
decreases with frequency, one says the dispersion i s  “nor- 
mal;’’ otherwise it is termed ”anomalous” dispersion. 
Another important effect in the propagation of a signal i s  
the attenuation of a wave, the dying out or absorption. The 
energy is typically dissipated into heat. Again, the amount 
of attenuation depends on the medium and the frequency. 
In the case of sound in normal conditions there i s  almost 
no attenuation, and that i s  why we are able to  hear from far 
away. In  contrast high-frequency electromagnetic waves 
are damped within a short distance of entering the surface 
of a conductor. Also, as a wave propagates from one 
medium to another, part of it gets reflected and part trans- 
mi tted. 

We are now in a position to  understand why a time-fre- 
quency analysis offers an effective description of a signal 

that has propagated through different media. At each 
instant of time the signal we measure will be the super- 
position of a number of waves. We may still be measuring 
the initial wave more or less as it left the source. Super- 
imposed on that will be a delayed signal from a reflection 
boundary, and that signal may have the same shape as the 
original one, but delayed in time. The superposition of these 
two signals may look quite complicated, but in the time- 
frequency plane we wil l simply see the distribution of the 
original signal and the samedistribution translated upward 
with respect to  time. This would be immediately recogniz- 
able. If in addition we have a wave that was delayed and 
dispersed, this will be seen in  a time-frequency plot as an 
image similar to  the original, displaced upward with a cer- 
tain amount of relative bending in those frequencies were 
the dispersion occurred. 

To illustrate we use the work of Boashash and Bazelaire 
[36] and Boles and Boashash [32] on geophysical explora- 
tion. Seismic signals are particularly rich and varied due to  
layers of different media. Not only are there layers of var- 
ious solids with different properties (e.g., shale, sandstone), 
but one has layers of water and gas beneath the surface. In 
addition i f  one is exploring off shore, the signal obtained 
from sources beneath the seabed are concealed by the 
reverberations of the water. What i s  typically done in explo- 
ration is to  produce a wave at the surface and measure the 
resulting wave at one or more places down the field. The 
initial wave i s  generated by different means, such as by an 
explosion caused by dynamite or by vibrating a metal plate 
coupled to the earth. The resulting acoustic wave travels 
through the different layers and i s  reflected upward with 
possible multiple reflections. The velocity of different lay- 
ers varies considerably. For air it i s  about 1000 ft/s and for 
solid rock it may be as high as 20 000 ftls. The resulting sig- 
nal will be a multicomponent signal, and if we did have a 
good time-frequency distribution, each component would 
stand out in  the time-frequency plane. A schematic dia- 
gram of what such a distribution would look like i s  pre- 
sented in Fig. 10, which isadapted from Bolesand Boashash 

FREQUEYCY - 
Fig. 10. Schematic diagram of a time-frequency distribu- 
tion for a wave reflected from media with different char- 
acteristics. Curve a-initial signal; curve 6-distribution of 
a signal that has gone through a layer with little dispersion; 
curve c-from layer with normal dispersion. The high fre- 
quencies travel at a slower speed and arrive at a relatively 
later time. Also the high frequencies are cut off for 6 and c, 
indicating attenuation. (Adopted from Boles and Boashash 
[32] and Boashash and Bazelaire [36].) 

[32]. The different components are labeled a-c, where a is 
the original signal at the source. The delays are due to 
reflection from deeper layers which arrive at a later time. 
The bending upward at the high frequencies i s  a reflection 
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of the normal dispersion because the high frequencies 
travel more slowly and arrive at a relatively later time. For 
the components that are delayed longest and have traveled 
furthest, the high frequencies are cut off because of atten- 
uation. The advantage of using a time-frequency descrip- 
tion i s  that one can see all these effects in one picture. 
Potentially one may obtain the parameters by direct mea- 
surement of the delay, attenuation, and dispersion and 
thereby identify the media through which it propagated. 
Synthesis methods can be used to  decompose the signal 
into its components. We have gone into some length in 
describing this type of situation because it is very typical 
of avarietyof phenomena and will most likely be oneof the 
common uses of time-frequency distributions. The imple- 
mentation of the idealized picture described i s  currently 
complicated by various factors. In particular, if the Wigner 
distribution is used, in addition to  the “real components” 
we have the cross terms, and for more than a few com- 
ponents the number of cross terms i s  very large. We also 
have noise. Also, because the layers are not uniform, the 
simple picture illustrated above becomes considerably 
more complicated. Boles and Boashash [32] have devised 
a number of methods to  overcome these difficulties and 
have applied their analysis to  real and simulated data. We 
havealreadyseen thatthenew distributionof Choiand Wil- 
liams [51] reduces the cross terms dramatically. It would 
certainly be interesting to apply that distribution to  such 
a situation. 

An innovative use of these distributions has been the 
work of Marinovic and Eichmann [134], [135], who devel- 
oped a novel approach that does not depend on inter- 
preting them as true distributions. The Wigner distribution 
is regarded as the kernel of an integral equation, and the 
corresponding eigenvalues and eigenfunctions are found. 
Theexpansion in terms of theeigenfunctions has been used 
for pattern recognition as the eigenvalues have been found 
to be effective classifiers of shapes. This decomposition may 
also be used to  suppress the effects of noise in  the Wigner 
distribution [136]. The noise i s  spread through all the terms 
of the decomposition and, retaining only the first few terms 
of the expansion, suppresses the noise considerably. The 
expansion methodwas applied by Marinovic and Smith [I361 
to show how the reconstructed distribution, which retains 
only the first few terms of the singular value expansion, 
allows one to  extract the local frequency information in the 
case of echo signals which get corrupted by interference 
and noise. 

Speech i s  one of the most complex nonstationary signals 
and a natural application for these time-frequency distri- 
butions. Chester and coworkers [49], [50] were the first to 
apply the Wigner distribution for the analysis and recog- 
nition of speech and constructed hardware for its calcu- 
lation. They pointed out that the Wigner distribution has 
considerable noise sensitivity and that the interpretation i s  
not straightforward, as with the spectrogram. However they 
found it useful for analysis and recognition.Their useof the 
Wignerdistribution i s  based on the possibility thatthechar- 
acteristic for speech signals i s  very robust and hence may 
be used for recognition. Pickover and Cohen [I561 used a 
number of distributions to  study speech and found them 
difficult to  interpret compared to the standard spectro- 
gram. They pinpointed the difficulty with each distribution 
they considered. Riley [I701 has considered the question of 

what kinds of distributions would be desirable to  use in 
speech analysis and has used smoothed distributions to 
study formant structure. He devised a means of detecting 
and extracting the relevant speech parameters. Velez and 
Absher [I931 used the smoothed Wigner distribution to  dis- 
playformant structure in speech and found i t to  bean effec- 
tive clarifier of speech sounds. We have already mentioned 
the work of Janse and Kaizer [97] in regard to  loudspeaker 
design. Preis [I611 used the Wigner distribution to  study 
various audio signals and found that the combined rep- 
resentation presents a clearer view of the various time-fre- 
quency quantities. Szu [I891 has given a comprehensive dis- 
cussion of the applications of bilinear distributions for the 
study of various acoustical signals,and in  particulartoques- 
tions of the signal processing involved in  hearing. 

Pattern recognition schemes use thedistribution as a two- 
dimensional representation, not necessarily time and fre- 
quency [I], [30], [37l, [65], [115]. Particular interpretations of 
a joint distribution as representing the energy i s  not 
required for this type of analysis. 

Kumar and Carroll [116], [ I 1 7  considered the use of the 
Wigner distribution function for the binary detection prob- 
lem where one has to make a yes-no decision as to the exis- 
tenceof a signal in the presence of additive noise. They used 
the integral along the instantaneous frequency of the Wig- 
ner distribution as a statistic. The Wigner distribution 
method performed comparably to  cross-correlation meth- 
ods. They point out possible advantages for nonstationary 
signals of more complexity. A detection scheme for deter- 
mining the instantaneous frequency of a chirp in  additive 
noise was considered by Kay and Boudreaux-Bartels [104]. 
They used the likelihood ratio test to  show that it i s  optimal 
to integrate the distribution along all straight lines in the 
time-frequency plane and choose the maximum value to 
compare to  a threshold. This reflects the fact that for chirp- 
like signals the concentration of the distribution i s  maxi- 
mum along the instantaneous frequency. Szu [I881 has 
devised a number of methods to  use these distributions for 
passive surveillance. He has taken advantage of the unique 
symmetry properties of the Wigner distribution. The syn- 
thesis method developed by Boudreaux-Bartels and Parks 
[39], [41] has been used to  separate two signals with dif- 
ferent characteristics. A general approach to the detection 
problem in the time-frequency plane has been formulated 
by Flandrin [78]. Harris and Abu Salem [88] have compared 
the performance of the Wigner distribution with other 
methods for the case of a sinusoid in the presence of addi- 
tive white noise. They found that for the estimation of 
amplitude and frequency the Wigner distribution behaves 
poorly in  noise but has the advantage that a priori knowl- 
edge of some of the characteristics of the signal is not 
required as i s  the case with some other methods. Cohen, 
Boudreaux-Bartels, and Kadambe [57l have devised a time- 
frequency approach to tracking mono- and multicompo- 
nent chirp signals in  noise. Boashash and O’Shea [31] have 
extended the work of Kumar and Carroll and applied their 
method to the identification of underwater acoustic tran- 
sients, in particular machine noise. They developed a gen- 
eral methodology for use of the Wigner distribution and 
cross Wigner distribution for detection problems. 

The Wigner distribution has been used extensively as a 
tool to study radiance functions and coherence in optics, 
and methods for i ts  production and optical filtering and 
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display have been proposed and studied [12], [13], [16], [42], 
[441, [641, [861, [961, [IO3l, [105l, [I@], [1821, W41. 

Linear predictive and autoregressive methods have been 
considered by Ramamoorthy et al. [165]. They showed that 
it results in good time and frequency resolutions, although 
they find that the interpretation is difficult. Boashash and 
coworkers [30], [I291 showed that autoregressive methods 
can improve resolution if a careful choice i s  made of the 
parameters, otherwise spurious peaks occur which have no 
significance. 

In a unique application Choi, Williams, and Zaveri [52] 
used the distribution discussed in Section Ill-G to  evaluate 
the classify “event-related potentials” where certain words 
were used to induce brain wave responses in patients. The 
signal obtained i s  represented by the distribution and used 
to classify the signal in terms of the types of stimuli. They 
found thedistribution given by Eq. (3.86)to beveryeffective 
as it reduces the masking effects of the cross terms. 

Breed and Posch [43] have used the Wigner distribution 
to study an array of receivers and have formulated it in terms 
of the spatial parameters. They show that is provides a use- 
ful range and azimuth estimator. This approach works very 
well because for moderate ranges the signal has a quadratic 
phase spatial variation. These are precisely the cases that 
the Wigner distribution is well suited to handle, as we have 
seen in Section V. Swindlehurst and Kailath [I851 have also 
devised a method for using the Wigner distribution for 
source localization for an array of receivers in the near-field 
approximation. 

The relationship between the evolutionary spectrum of 
Priestley [I621 and the Wigner distribution has been made 
by Hammond and Harrison [87]. 

The theoryof these distributions has been applied to  sto- 
chastic signals, and many of the original papers in the field 
addressed this aspect of the problem. This involves a fur- 
ther averaging to  take into account the distribution of sig- 
nals. Comprehensive work has been done by Janssen [99], 
Martin [139], Martin and Flandrin [140], and White [196]. 
Martin [I391 has coined the phrase Wigner-Ville spectrum 
to indicate the Wigner distribution that has been ensemble 
averaged over the possible realizations of the signal. White 
[I961 and White and Boashash [197], [I981 have devised spe- 
cific methods for obtaining the important parameters of a 
random process and have given expressions for the errors 
involved in estimating the parameters. Posch [I591 has 
shown that if Eq. (4.10) is satisfied by the kernel, then the 
distribution will be the power spectrum when the input i s  
a random stationary signal. 

In concluding this summary of the applications, we 
emphasize that these distributions have not only been use- 
ful to study old ideas, but have also led to new concepts. 
An innovative concept has been introduced by Szu and 
Coulfield [186], where they address the question of how to 
compare the frequency contents of two signals. They 
devised a four-dimensional Rihaczek distribution, the vari- 
ables being time and frequency for each signal. From this 
correlated distribution they compare the frequency con- 
tents of two signals. 

X. CONCLUSION 

In conclusion we discuss some general attitudes that have 
arisen in regard to  these time-frequency distributions. The 

enigma of these distributions i s  that they sometimes give 
very reasonable results and sometimes absurd ones. For 
example, the Wigner distribution gives a very reasonable 
result for the first conditional moment of frequency, but an 
unreasonable one for the second conditional moment. A 
common attitude i s  that when we do get unacceptable 
results, we will know that the theory does not apply, and 
wewill not use it for those situations.The problem with that 
point of view is  how do you know when the results are 
absurd? Sometimes it i s  obvious, but not always. The fact 
that thesedistributions cannot be used in  aconsistent man- 
ner is one of the main areas that needs much further the- 
oretical development. 

Oneof the major issues in the field hasalways been which 
distribution, if any, i s  the absolute “best.” There has been 
a general attempt to  set up a set of desirable conditions and 
totryto provethatonlyonedistribution fits them.Typically, 
however, the list i s  not complete with the obvious require- 
ments, because the author knows that the added desirable 
properties would not be satisfied by the distribution he i s  
advocating. Also these lists very often contain require- 
ments that arequestionableand areobviously put in to  force 
an issue. An example i s  the requirement that Moyal’s for- 
mula should hold, but it is unclear why. If we found a dis- 
tribution for which the Moyal formula did not hold but 
nevertheless behaved well, would we reject it on that basis? 
Clearly not. Witness the recent discovery of the Choi-Wil- 
liams distribution. Another requirement commonly 
imposed i s  the finite support property, that is, for a finite- 
duration signal the distribution should be zero before the 
signal stops and after the signal ends. That certainly seems 
like a desirable condition for if there is no signal, we expect 
the distribution to  be zero. (However, we know from Sec- 
tion V that there are distributions, for example, the Wigner, 
which have the finite-support property but are not nec- 
essarily zero in regions where the signal i s  zero.) But then 
thecondition should simply bethat the distribution should 
be zero if the signal is zero and not just the finite-support 
property. The positivity condition i s  also usually left out, 
although everyone concerned with choosing a best distri- 
bution mentions the advantage of having a positive distri- 
bution. Wealso point outthat even plausiblesoundingcon- 
ditions have to  be applied carefully. An often stated 
requirement is that the first conditional moment of fre- 
quency be the derivative of the phase of the signal because 
it corresponds to  instantaneous frequency. This may sound 
reasonable, but we already discussed in Section Vl l l  the 
difficulties of making a total identification of instantaneous 
frequency, first conditional moment, and derivative of the 
phase. As has been pointed out in Section VIII, there i s  the 
theoretical difficulty that the derivative of the phase does 
not always correspond to the frequencies in the Fourier 
spectrum [74], [131]. This indicates that there may be a pos- 
sible inherent inconsistency with the marginal require- 
ment. This problem requires considerable further inves- 
tigation. Also the requirement should be in terms of the 
analytic signal because that i s  how instantaneous fre- 
quency is defined. Moreover it i s  well known that the use- 
fulness of the definition i s  meaningful only for certain types 
of signals, and therefore it i s  questionable whether we 
should insist that this hold for all signals. Given al l  these 
issues, it i s  not straightforward to  set up the conditions for 
the satisfaction of the concept of instantaneous frequency. 
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Indeed, a comprehensive theory of a time-varying spec- 
trum should predict what instantaneous frequency is. 

Another approach i s  to  argue that the performance of a 
distribution i s  best for a particular property that i s  deemed 
desirable. In  a penetrating work Janssen [98]considered the 
performance of distributions for signals of the form s( t )  = 
e/”“’and attempted to  determine which distribution i s  more 
concentrated along the line w = p’(t). Toward that end he 
needed a method to determine the spread along that line. 
As we have seen, the concept of spread using these dis- 
tributions i s  far from clear, so Janssen squared the distri- 
bution to  avoid the fact that the distributions may go neg- 
ative. Some have assumed that Janssen showed that the 
Wigner distribution has the least amount of spread around 
the derivative of the phase. However, Janssen proved this 
only for the class of distributions that have kernels of the 
form 4(0, 7) = elas‘. Also, we have seen that for multicom- 
ponent signals there are distributions that behave better 
than the Wigner distribution in the sense that the cross 
terms are smaller in magnitude. Hence it is  far from clear 
whether “optimality” should be set up for mono or mul- 
ticomponent signals, or perhaps neither. 

Another common argument for elevating a particular dis- 
tribution is to argue, for example, that al l  time- and shift- 
invariant distributions can be expressed as a ”smoothed” 
version of it and therefore degraded in some sense. In  par- 
ticular it isoften stated that the time-and shift-invariant dis- 
tributions may be written in the form 

P(t, w )  = s g(t’ - t ,  w’ - w )  W(t’, U‘) dt‘ dw’ (10.1) 

where W(t,  w )  i s  the Wigner distribution, making it the “fun- 
damental” one. However, we have seen in Section IV that 
we can equally well express the distributions in terms of, 
for example, the Rihaczek distribution. 

Another view is that the choice of distribution should 
depend on the application and possibly the class of signals 
used,much in thesamespirit asdifferentwindowfunctions 
are chosen in various applications of the spectrogram or 
different sets of functions are used to expand the electro- 
static potential depending on the geometryof the problem. 
As with expansions in terms of a complete set of functions, 
the choice i s  a matter of convenience, insight, and math- 
ematical simplicity, which depends on the situation. Per- 
haps the proper attitude should be that the choice of dis- 
tribution should be signal or application dependent. Indeed 
the recent work of Choi and Williams [51] and Nuttall [146], 
[147], which uses the ambiguity plane to choose the kernel, 
i s  an indication that different kernels may be appropriate 
for different signals. This makes kernels signal dependent, 
and hence the distributions are not necessarily bilinear any 
longer. Given these exciting developments it appears that 
at this stage of our knowledge, trying to  prove which func- 
tion is “best” i s  premature to say the least. 

We now turn to what has been a fundamental issue with 
these joint distributions, and that is the positivityquestion. 
Everyone agrees that ideally a distribution should be pos- 
itive since they are to  be interpreted as densities. Many 
proofs have been given that positive distributions satisfying 
the marginals do not exist. The common plausibility argu- 
ment relied on the uncertainty principle as discussed in 
Section VIII. A thorough and profound analysis of the pos- 
itivity question has been given by Mugur-Schachter [144], 

who has identified many of the questionable and hidden 
assumptions that have gone into the proofs to  show that 
they do not exist. Even before positive distributions were 
constructed, as explained in  Section I l l ,  it was clear that 
there could not be any inherent reason for their nonexis- 
tence since the Wigner distribution is  positive for certain 
signals. Park and Margenau [154], in their work on joint 
measurability, also analyzed the various arguments that 
have been given for the nonexistence of positive distri- 
butions and were able to  construct a simple counterex- 
ample. Of course we now know that positive distributions 
are easily constructed, as in Section Il l-F, and that they do 
yield the correct marginals and the uncertainty principle. 

It i s  a fact that distributions which are bilinear functionals 
of the signal cannot be positive for all signals [199], [200]. 
Joint densities and marginals appear in every field of sci- 
ence and engineering, and certainly bilinearity i s  never 
imposed on a distribution. Note that in time-frequency 
analysis the marginals themselves are bilinear in  the signal, 
and hence bilinear distributions in the sense discussed here 
are joint distributions which are bilinear to the square root 
of the marginals. Now even the simplest proper joint dis- 
tribution, the correlationless one [P(x,  y) = P,(x)P,(y)], i s  a 
product of the marginals and hence quartilinear to  the 
square root of the marginals. In  general, proper joint dis- 
tributionsarehighlynonlinearfunctionalsof the marginals. 
The possibility of using distributions that are not bilinear 
in the signal needs considerably more research. That i s  not 
to say that the class of bilinear distributions are not useful 
or desirable. However, we should be clear about the con- 
ceptual assumptions and interpretations. 

Current knowledge has barely scratched the surface of 
the possible distributions and methodologies that may be 
used to describe a time-varying spectrum. There are an infi- 
nite number of distributions, and only a few have been 
explored. Although the concepts and techniques that have 
been developed in the past 40 years are truly impressive, 
it i s  clear that much more work lies ahead. The attempt to  
understand what a time-varying spectrum is, and to rep- 
resent the properties of a signal simultaneously in  time and 
frequency, i s  one of the most fundamental and challenging 
aspects of analysis. 

ADDITIONAL COMMENTS 
I would like to mention some recent results and some 

additions and omissions in the text. 
Elimination of Aliasing in the Discrete Wigner Distribu- 

tion. For a band-limited signal, the value of the signal at an 
arbitrary time can be obtained from discrete sampled val- 
ues if the sampling is done at the Nyquist rate or higher, 
that is, at a sampling frequency as 2 2wmax, where amax i s  
the highest frequency in  the signal. As mentioned in Sec- 
tion V-E, it has generally been believed that to reconstruct 
the Wigner distribution from discrete samples, one must 
sample the signal at twice this rate or higher; otherwise 
aliasing will occur. Nuttall [206] has recently shown that the 
higher sampling rate i s  unnecessaryand hasdevised an effi- 
cient alias-free method for the computation of the Wigner 
distribution from a signal sampled at the Nyquist rate. The 
key to his approach i s  to  take into account all the available 
information in the local autocorrelation function &(7) as 
given by Eq. (3.64). By doubly Fourier transforming the local 
autocorrelation function, Nuttall has shown that non- 
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overlapping diamond-shaped regions exist in the trans- 
formed plane, each containing the fundmental informa- 
tion, provided that the signal was sampled at the Nyquist 
rate or higher. The end result of his analysis for obtaining 
the Wigner distribution at an arbitrary time-frequency pair 
i s  to construct first 

c S ( ~ T )  e-iukT, if 5 2 
T 

otherwise 
where s(kT) are the sampled signal values. The Wigner dis- 
tribution i s  then constructed from S(U) according to 

w(t, = 1 2T s* (U - 9 )  eJtes(w + 9 )  d9. 

Nuttall has shown that this is the Wigner distribution of the 
original continuoys signal s(t) and is hence free of aliasing. 
In practice, both S(U) and W(t, w )  will be discretized in time 
and frequency and accomplished by fast Fourier trans- 
forms. We note that interpolation of the sampled values or 
reconstitution of the continuous signal from the sampled 
values i s  not necessary or utilized. 

“Data-Adaptive“ Distributions: As discussed in the Con- 
clusion, the most common view point regarding time-fre- 
quency distributions i s  to find a “best” one, which will be 
used for all signals, although, as we mentioned, there are 
recent indications that different distributions may be 
appropriate for different signals. Recently ]ones and Parks 
[207], [208] have made an important contribution in devel- 
oping and implementing a “data-adaptive” method for 
devising a time-frequency distribution of a certain form. 
They consider the short-time Fourier transform with a 
Gaussian window where the parameters of the Gaussian 
window are varied for each different point in the time-fre- 
quency plane. The parameters are chosen so that the time- 
frequency concentration of the locally dominant compo- 
nent i s  maximized.They have applied this approach to both 
idealized and real data with considerable effectiveness in 
constructing distributions with high resolution. 

Resolution Comparison: Jones and Parks [209] have made 
an interesting comparative study of the resolution prop- 
erties of the Wigner distribution, spectrogram, and 
smoothed Wigner distribution. They used a signal com- 
posed of two Gaussian components with different time and 
frequency centers. They showed that for this case the best 
resolution (defined by the ability of the distribution to sep- 
arate the two centers) was obtained by the spectrogram with 
an optimally matched window. 

Bilinear Distributions: The approach discussed in Section 
Il l-D was extended in O‘Connell and Wigner [210], where 
they considered the question of uniqueness in a distri- 
bution. 

Local Second Moment: It was mentioned in the text that 
the second local moment of frequency corresponds to the 
local kinetic energy in quantum mechanics and that dif- 
ferent expressions have been considered. The unified 
approach where previous expressions are special cases was 
presented in [211], and the references to previously known 
expressions are given therein. 

Applications: Forrester [212] has applied the Wigner dis- 
tribution to the study of vibrations of helicopter compo- 
nents with the aim of detecting developing failure of 
machine parts, in particular gear failure. By examining the 

vibrations of gears with and without faults he has shown 
that the Wigner distribution i s  an excellent discriminator 
and can be used to detect both the type and the extent of 
faults. 

White and Boashash [213] developed a method for esti- 
mating the Wigner distribution for a nonstationary random 
process. They use a recursive procedure for the specifi- 
cation of estimators having desired characteristics in the 
particular regions of the time-frequency plane. 
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