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A review and tutorial of the fundamental ideas and methods of
joint time-frequency distributions is presented. The objective of
the field is to describe how the spectral content of a signal is
changing in time, and to develop the physical and mathematical
ideas needed to understand what a time-varying spectrum is. The
basic goal is to devise a distribution that represents the energy or
intensity of a signal simultaneously in time and frequency.
Although the basic notions have been developing steadily over the
last 40 years, there have recently been significant advances. This
review is presented to be understandable to the nonspecialist with
emphasis on the diversity of concepts and motivations that have
gone into the formation of the field.

. INTRODUCTION

The power of standard Fourier analysis is that it allows
the decomposition of a signal into individual frequency
components and establishes the relative intensity of each
component. The energy spectrum does not, however, tell
us when those frequencies occurred. During a dramatic
sunset, for example, it is clear that the composition of the
light reaching us is very different than what it is during most
of the day. If we Fourier analyze the light from sunrise to
sunset, the energy density spectrum would not tell us that
the spectral composition was significantly different in the
last 5 minutes. In this situation, where the changes are rel-
atively slow, we may Fourier analyze 5-minute samples of
the signal and get a pretty good idea of how the spectrum
during sunset differed from a 5-minute strip during noon.
This may be refined by sliding the 5-minute intervals along
time, that is, by taking the spectrum with a 5-minute time
window at each instant in time and getting an energy spec-
trum as a continuous function of time. As long as the 5-min-
ute intervals themselves do not contain rapid changes, this
will give an excellent idea of how the spectral composition
of the light has changed during the course of the day. If
significant changes occurred considerably faster than over
5 minutes, we may shorten the time window appropriately.
This is the basic idea of the short-time Fourier transform,
or spectrogram, which is currently the standard method for
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the study of time-varying signals. However, there exist nat-
ural and man-made signals whose spectral content is
changing so rapidly that finding an appropriate short-time
window is problematic since there may not be any time
interval for which the signal is more or less stationary. Also,
decreasing the time window so that one may locate events
in time reduces the frequency resolution. Hence there is
an inherent tradeoff between time and frequency resolu-
tion. Perhaps the prime example of signals whose fre-
quency content is changing rapidly and in a complex man-
ner is human speech. Indeed it was the mativation to
analyze speech that led to the invention of the sound spec-
trogram [113], [160] during the 1940s and which, along with
subsequent developments, became a standard and pow-
erful tool for the analysis of nonstationary signals [5], [6],
[68],(75),[111], [112],[126], [150], [157], [158], [163], [164],[174].
Its possible shortcomings not withstanding, the short-time
Fourier transform and its variations remain the prime meth-
ods for the analysis of signals whose spectral content is
varying.

Starting with the classical works of Gabor [80], Ville [194],
and Page [152], there has been an alternative development
for the study of time-varying spectra. Although it is now
fashionable to say that the motivation for this approach is
toimprove upon the spectrogram, it is historically clear that
the main motivation was for a fundamental analysis and a
clarification of the physical and mathematical ideas needed
to understand what a time-varying spectrum is. The basic
idea is to devise a joint function of time and frequency, a
distribution, that will describe the energy density or inten-
sity of a signal simultaneously in time and frequency. in the
ideal case such a joint distribution would be used and
manipulated in the same manner as any density function
of more than one variable. For example, if we had a joint
density for the height and weight of humans, we could
obtain the distribution of height by integrating out weight.
We could obtain the fraction of people weighing more than
150 Ib but less than 160 Ib with heights between 5 and 6
ft. Similarly, we could obtain the distribution of weight at
a particular height, the correlation between height and
weight, and so on. The motivation for devising ajoint time~
frequency distribution is to be able to use itand manipulate
it in the same way. If we had such a distribution, we could
ask what fraction of the energy is in a certain frequency and
time range, we could calculate the distribution of fre-
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quency at a particular time, we could calculate the global
and local moments of the distribution such as the mean
frequency and its local spread, and so on. In addition, if we
did have a method of relating a joint time-frequency dis-
tribution to a signal, it would be a powerful tool for the con-
struction of signals with desirable properties. This would
be done by first constructing a joint time-frequency func-
tion with the desired attributes and then obtaining the sig-
nal that produces that distribution. That is, we could
synthesize signals having desirable time-frequency char-
acteristics. Of course, time-frequency analysis has unique
features, such as the uncertainty principle, which add tothe
richness and challenge of the field.

From standard Fourier analysis, recall that the instanta-
neous energy of a signal s(t) is the absolute value of the sig-
nal squared,

s

intensity per unit time at time t

or
|s(O*at

i

fractional energy in time interval At at time t.
(1.1

The intensity per unit frequency,’ the energy density spec-
trum, is the absolute value of the Fourier transform squared,

|S(@)|? = intensity per unit frequency at w

or
|S(w)|*Aw = fractional energy in frequency
interval Aw at frequency v  (1.2)
where
1 .
Slw) = —= Sste"’”‘ dt. 1.3
@ == ® (1.3)

We have chosen the normalization such that

S |s®]? dt = S IS(w)|? dw = total energy =1 (1.4)

where, for convenience, we will always take the total energy
to be equal to 1.2 The fundamental goal is to devise a joint
function of time and frequency which represents the energy
or intensity per unittime per unit frequency. For ajoint dis-
tribution P(t, w) we have

P(t, w) = intensity at time t and frequency w
or

P(t, w)At Aw

fractional energy in time-frequency
cell At Aw at t, w.

Ideally the summing up of the energy distribution for all
frequencies at a particular time would give the instanta-
neous energy, and the summing up over all times at a par-
ticular frequency would give the energy density spectrum,

i

S P(t, w) dw = |s(t)? (1.5)

]

g Plt, o) dt = |S(w)]> (1.6)

"We use angular frequency. All integrals go from —o to +o
unless otherwise stated.

2Signals that cannot be normalized may be handled as limiting
cases of normalized ones or by using generalized functions.
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The total energy E, expressed in terms of the distribution,
is given by

E= S P(t, w) dw dt (1.7)

and will be equal to the total energy of the signal if the mar-
ginals are satisfied. However, we note that it is possible for
a distribution to give the correct value for the total energy
without satisfying the marginals.

Do there exist joint time-frequency distributions that
would satisfy our intuitive ideas of atime-varying spectrum?
Can their interpretation be as true densities or distribu-
tions? How can such functions be constructed? Do they
really represent the correlations between time and fre-
quency? What reasonable conditions can be imposed to
obtain such functions? The hope is that they do exist, but
if they do not in the full sense of true densities, what is the
best we can do? Is there one distribution that is the best,
or are different distributions to be used in different situ-
ations? Are there inherent limitations to a joint time-fre-
quency distribution? This is the scope of time-frequency
distribution theory.

Scope of Review, Notation, and Terminology: The basic
ideas and methods that have been developed are readily
understood by the uninitiated and do not require any spe-
cialized mathematics. We shall stress the fundamental
ideas, motivations, and unresolved issues. Hopefully our
emphasis on the fundamental thinking that has gone into
the development of the field will also be of interest to the
expert.

We confine our discussion to distributions in the spirit
of those proposed by Wigner, Ville, Page, Rihaczek, and
others and consider only deterministic signals. There are
other qualitatively different approaches for joint time-fre-
quency analysis which are very powerful but will not be dis-
cussed here. Of particular note is Priestley’s theory of evo-
lutionary spectra[162] and we point out that his discussions
of the basic concepts relating to time-varying spectra are
among the most profound. Also, we will not consider the
Gabor logon approach, although it is related to the spec-
trogram discussed in Section VI.

As usual, when considering many special cases and sit-
uations, one may quickly become embroiled in a morass
of subscripts and superscripts. We have chosen to keep the
notation simple and, if no confusion arises, we differentiate
between cases and situations by context rather than by
notation.

Some of the terminology may be unfamiliar or puzzling
to some readers. Many words, like distribution in the prob-
ability sense, are used because of historical reasons. These
distributions first arose in quantum mechanics where the
words '‘probability density”” or “distribution’” are applied
properly. For deterministic signals where no probabilistic
considerations enter, the reader should think of distribu-
tions as “intensities’” or “‘densities” in the common usage
of the words, or simply as how the energy is “distributed"”
in the time-frequency cells. Of course many probability
concepts apply to intensities, such as averages and spreads.
When we deal with stochastic signals, probability concepts
do properly enter. As we will see, many of the known dis-
tributions may become negative or even complex. Hence
they are sometimes called quasi or pseudo distributions.
Also from probability theory, the word “‘marginal” is used
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to indicate the individual distribution. The marginals are
derived from the joint distribution by integrating out the
other variables. Hence we will say that |s(t)|? and S(w)|? are
the marginals of P(t, w), as per Eqgs. (1.5) and (1.6).

I1I. Brier HISTORICAL PERSPECTIVE AND EXAMPLES

Although we will discuss the particular distributions in
detail, itis of value to give a short historical perspective here.
The two original papers that addressed the question of a
joint distribution function in the sense considered here are
those of Gabor [80] and Ville [194]. They were guided by a
similar development in quantum mechanics, where there
is a partial mathematical resemblance to time-frequency
analysis. We discuss this resemblance later, but we empha-
size here that the physical interpretations are drastically
different and the analogy is only formal. Gabor developed
a mathematical method closely connected to so-called
coherent states in quantum mechanics. in the same paper
Gabor introduced the important concept of the analytic sig-
nal. Ville derived a distribution that Wigner [199] gave in
1932 to study quantum statistical mechanics. At the same
time as Ville, Moyal [143] used an identical derivation in the
quantum mechanical context. Although we use the word
“derivation,” we emphasize that there is an ambiguity in
the method of Ville and Moyal, and many later authors used
the same derivation to obtain other distributions. The Wig-
ner-Ville distribution is

1 1 1
- — * - = e -
W(t, w) T S S (t 5 T) e S(t + > T> dr. 2.1

It satisfies the marginals, but we do not show that now. We
shall see later that by simple inspection the properties of
a distribution can readily be determined. A year after Wig-
ner, Kirkwood [107] came up with another distribution and
argued thatitis simpler to use than the Wigner distribution
for certain problems. The distribution is simply

e L * —Jwt
elt, ) N> s(t) S*(wye ™™ (2.2)
This distribution and its variations have been derived and
studied in many ways and independently introduced in sig-
nal analysis. A particularly innovative derivation based on
physical considerations was given by Rihaczek [167]. Levin
[125] derived it by modifying the considerations that led to
the Page [152] distribution. Margenau and Hill [133] derived
it by the Ville and Moyal methods. Equation (2.2) is complex
and is sometimes called the complex energy spectrum. Its
real part is also a distribution and satisfies the marginals.

In 1952 Page [152] developed the concept of the running
spectrum. He obtained a new distribution from simple con-
ceptual considerations and coined the phrase “instanta-
neous power spectra.”” The Page distribution is

2

P (t, w) = 3 . (2.3)

at

1 ' N o fet’ ’
o S,m s(t)e ™ dt
It was pointed out by Turner [190] and Levin [125] that the
Page procedure can be used to obtain other distributions.

A comprehensive and far-reaching study was done by
Mark[138]in 1970, where many ideas commonly used today
were developed. He pinpointed the difficulty of the spu-
rious values in the Wigner distribution, introduced the
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“physical” spectrum, which is basically the spectrogram,
and showed its relation to the Wigner distribution. Fun-
damental considerations regarding time-frequency distri-
butions and nonstationary processes were given by Blanc-
Lapierre and Picinbono [24], Loynes [128], and Lacoume and
Kofman [121].

One of the main stumbling blocks in developing a con-
sistent theory is the fact that the behavior of these few dis-
tributions is dramatically different and each has peculiar
properties. However, each does satisfy the marginals, has
other desirable properties, and presumably is a good can-
didate for the time-varying spectrum. Furthermore each has
been derived from seemingly plausibie ideas. It was unclear
how many more existed and whether the peculiarities were
general features or individual ones. It was subsequently
realized [58] that an infinite number can be readily gen-
erated from

P(t, w) —_ # SSS e~/017/1w+j9u¢(0' T)

. s*(u - %T) s<u + % T> dudrdé (2.4)

where ¢(8, 7) is an arbitrary function called the kernel® by
Claasen and Mecklenbrauker [56]. By choosing different
kernels, different distributions are obtained at will. For
example the Wigner, Rihaczek, and Page distributions are
obtained by taking ¢(6, ) = 1, #2, and e *"1?, respectively.
Having a simple method to generate all distributions has
the advantage of allowing one to prove general results and
to study whataspects of a particular distribution are unique
or common to all. Equally important is the idea that by plac-
ing constraints on the kernel one obtains a subset of the
distributions which have a particular property [58]. That is,
the properties of the distribution are determined by the cor-
responding kernel.

There has been agreat surge of activity in the past 10 years
or so and the initial impetus came from the work of Claasen
and Mecklenbrauker [54]-[56], Janse and Kaizer [97], Boa-
shash (aka Bouachache) [35], and others. The importance
of their initial contributions is that they developed ideas
uniquely suited to the time-frequency situation and dem-
onstrated useful methods for implementation. Moreover,
they were innovative in using the similarities and differ-
ences with quantum mechanics. In an important set of
papers, Claasen and Mecklenbrauker [54]-[56] developed
a comprehensive approach and originated many new ideas
and procedures for the study of joint distributions. Boa-
shash [35] was perhaps the first to utilize them for real prob-
lems and developed a number of new methods. In partic-
ular he realized that even though a distribution may not
behave properly in all respects or interpretations, it could
still be used if a particular property such as instantaneous
frequency is well described. He initially applied them to
problems in geophysical exploration. Escudie [71], [77] and
coworkers transcribed directly some of the early quantum

*In general the kernel may depend explicitly on time and fre-
quency and in addition may also be a functional of the signal. To
avoid notational complexity we will use ¢(9, 7), and the possible
dependence on other variables will be clear form the context. As
we will see in Section IV, the time- and frequency-shift invariant
distributions are those for which the kernel is independent of time
and frequency.
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mechanical results, particularly the work on the general
class of distributions [58], [132], into signal analysis lan-
guage. The work by Janse and Kaizer [97] was remarkable
in its scope and introduction of new methodologies. They
developed innovative theoretical and practical techniques
for the use of these distributions.

Many divergent attitudes toward the meaning, interpre-
tation, and use of these distributions have arisen over the
years, ranging from the attempt to describe a time-varying
spectrum to merely using them as carrying the information
of a signal in a convenient way. The divergent viewpoints
and interests have led to a better understanding and imple-
mentation. We will discuss some of the common attitudes
and unresolved issues in the conclusion. The subject is
evolving rapidly and most of the issues are open.

Preliminary llustrative Examples: Before proceeding we
present a simple example of the above distributions so that
the reader may get a better feeling for the variety and dif-
ficulties. We consider the signal illustrated in Fig. 1(a). Ini-
tially the sine wave has a frequency w, in the interval (0, t;),
then it is shut off in the interval (t;, t;) and turned on again
in the interval (t,, t;) with a frequency w,. This simple signal
is an idealization of common situations that we hope these
distributions will handle effectively. The signal is highly
nonstationary, has intermediate periods of silence com-
mon in acoustic signals, and has sudden onsets. Everyone
has a sense of what the distribution should be. We expect
the distribution to show a peak at w, in the interval (0, t;)
and another peak at w, for the interval (t,, t;), and of course
to be zero in the interval (t;, t;). Fig. 1 illustrates the dis-
tributions mentioned thus far and we see that they all imply
intensities, that is, nonzero values, at places that are not
expected. The Wigner distribution is not zero in the range
(t1, tp) although the signal is. This is a fundamental property
which we discuss later. The Rihaczek distribution has non-
zero values at w, at time (t;, t,), although we would expect
zero intensity at that frequency for those times. Similar
statements hold for the interval (t,, t;) at frequency w,. The
distribution is such that all values of the spectrum are
reflected at each time. The Page distribution is similar to
that of Rihaczek, but it reflects only those frequencies that

have already occurred. We also note that while the Wigner
distribution peaks in the middle of each portion of the sig-
nal, the Rihaczek distribution is flat and the Page distri-
bution gradually increases as more of the signal at that fre-
quency comes through in time.

We emphasize that all three distributions satisfy the
instantaneous energy and spectral energy exactly. Although
very different in appearance, they are equivalent in the
sense thateach one can be obtained from the other uniquely
and contains the same amount of information. They are very
different in their energy concentration, but nonetheless all
three have been used with considerable profit. We note
that these are just three possibilities out of an infinite num-
ber of choices, all with vastly different behavior.

IIl. THE DISTRIBUTIONS AND METHODS FOR OBTAINING
THEM

One of the remarkable facts regarding time-frequency
distributions is that so many plausible derivations and
approaches have been suggested, yet the behavior of each
distribution is dramatically different. It is therefore impor-
tant to understand the ideas and arguments that have been
given, as variations and insights of them will undoubtedly
lead the way to further development. We will not present
these approaches in historical order, but rather in a
sequence that logically develops the ideas and techniques.
However, the different sections may be read indepen-
dently. With the benefit of hindsight we have streamlined
some of the original arguments.

A. Page Distribution and Variations

Page[152] argues that as the signal is evolving, our knowl-
edge of it consists of the signal up to the current time t and
we have noinformation about the future part. Conceptually
we may consider a new signal s,(t"),

s(t), st
S{t) = (3.1)
0, t' >t

FREQUENCY

(a)

(9}

fig. 1. (a) Wigner, (b) Rihaczek, and {c) Page distributions for the signal illustrated at left.
The signal is turned on at time zero with constant frequency w, and turned off at time t,,
turned on again attime t, with frequency w, and turned off at time t;. All three distributions
display energy density where one does not expect any. The positive parts of the distri-
butions are plotted. For the Rihaczek distribution we have plotted the real part, which is

also a distribution.
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where t’ is the running time and tis the present instant. The
Fourier transform of s,(t') is

Silw) = L\/z_ S st)e ! dt’
n o

t
= % S s(t)e ! dt’ (3.2)
T J-—o

which is called the running spectrum. The (—) notation is
to signify that we have observed the signal from —oo. In
analogy with Eq. (1.6) we expect the energy observed per
unit frequency up to time t to be

t
S P(t, w) dt’ = |S; ()% (3.3)

This equation can be used to determine P (t, w), since dif-
ferentiation with respect to t yields

d
P(t, w) = % |7 ()| (3.4)

which is the Page distribution. It can be obtained from the
general class of distributions, Eq. (2.4), by taking

#6, 1) = "2, (3.5
Substituting Eq. (3.2) into (3.4) and carrying out the differ-
entiation, we also have

P7{t, w) = 2 Re

1 .
7 S*(1) S; (w)e’™ (3.6)
which is a convenient form for its calculation.

As for the general behavior of the Page distribution, we
note that the longer a particular frequency is observed, the
larger the intensity is at that frequency. This is illustrated
in Fig. 2(a), where we plot the Page distribution for the finite-
duration signal,

sih=e™, O0=<t=<T 3.7

The distribution is

t

- sinc (w — wy)t, 0<t=<T
P(t,w) =9 " (3.8)

0, otherwise.

Astime increases, the distribution becomes more and more
peaked at wp. In Fig. 2(b) we have also plotted the Wigner
distribution for the same signal for later discussion. We
remark here that up to t = 772 the distributions are iden-
tical, but after that, their behavior is quite different. The
Wigner distribution always goes to zero at the beginning

and end of a finite-duration signal. That is not the case with
the Page distribution.

It was subsequently realized by Turner [190] that Page's
definition and procedure have two arbitrary aspects. First
we can add to the Page distribution the function o(t, w),
which Turner called the complementary function, and
obtain a new distribution,

3
Prewlty @) = = 1S7(@)|? + oft, ). 3.9

The marginals are still satisfied if the complementary func-
tion satisfies

S pt, w) dt =0 and S p(t, w) do = 0. (3.10)

Turner also pointed out that taking the interval from —o
to tis not necessary; other intervals can be taken, each pro-
ducing a different distribution function related to each
other by a complementary function satisfying the above
conditions.

Levin [125] defined the future running transform by

1 ® -
SHw = \/—2—1; gl s(tYe ™ dt’ 3.11)

and using the same argument, we have
S PHT, w) dt’ = |SHW)% (3.12)
t
Differentiation with respect to time leads to

PT(t, w)

9 e
Py 1S (W)

I

2 Re

1 .
s*(t) S (we ™. (3.13)

v2r ‘

He also argued that we should treat past and future on the

same footing, by defining the instantaneous energy spec-

trum as the average of the two,

1
P(t, w) = E[P*(t, ) + P(t, w)] (3.14)
= —1\5—; Re s*(t) e[S, (w) + S} (w)]  (3.15)
= % Re s*(t) e/*'S*(w). (3.16)

This distribution is the real part of the distribution given by
Eq. (2.2), which corresponds to the kernel ¢(9, 7) = cos 107

veoe ety
A
rototoleelt;

Fig. 2. (a) Page and (b) Wigner distributions for the finite-duration signal s(t) = e, 0 <
t < T. As time increases, the Page distribution continues to increase at w,. The Wigner
distribution increases until T/2 and then decreases because the Wigner distribution aiways

goes to zero at the beginning and end of a finite-duration signal.
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Because of the symmetry between time and frequency
we can also define the running signal transform by

sj(t) = %/2_ g S(w)e" dw’ (3.17)
T — <o

which yields the distribution

Pt, w) = a_a“; ENGIE

1 .
= 2 Re —= s, () S(w)e ™" 3.18)
T 0% :
Similarly,
Bt w) = S Sm s(e)ye ™" dt’ 2. (3.19)
’ dw \/Zr— @
If Egs. (3.17) and (3.18) are added together, we again obtain
Eq. (3.16).

Filterbank Method: Grace [83] has given a interesting
derivation of the Page distribution. The signal is passed
through a bank of bandpass filters and the envelope of the
output is calculated. The squared envelope is given by

t 2
IGlt, )| = “ s(7) h(t — ne™ dr (3.20)

where h(t)e’®' is the impulse response of one filter. By
choosing the impulse response h(t) to be 1 up to time t and
zero afterward, we obtain the frequency density, the right-
hand side of Eq. (3.3), and the Page distribution follows as
before.

B. Complex Energy Spectrum

As already noted, the Rihaczek distribution was used and
derived in many ways, but Rihaczek [167] and Ackroyd [2],
[3]derived it from physical considerations. Consider a time-
dependent voltage V(t) going through a pure reactance
whose admittance function is zero for all frequencies except
for a narrow band around w, where it is 1. If we decompose
the voltage into its frequency components,

1
V) = —— S V,e"t d 3.21
\/ﬂ w ( )

the voltage at each frequency is (1/N2r)V, e’ The current
at that frequency is

1
ift) = o Vel (3.22)
T

and the total current in the frequency range w to w + Aw
is

w+ Aw ,I Sw+Aw .
i(ty = i) dw = — v.edw (3.23
i(t) Sw i(t) dw N e w.  (3.23)

The complex power at time t is V(t) i*(t), and hence the
energy in the time interval At is

t+at
E(t, w) = 5 V(t) i*(t) dt

t

il

1 t+ At w+ Aw
e j S ViVie ™ dw dt.  (3.24)
m t @
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We now obtain the energy density  at t by going to the
limit,
E(t, w) 1 . _
elt, w) = lim —— =—=ViVde™. (3.25
¢ aaw—0 At Aw 27
Associating a signal s(t) with the voltage V(t) [in which case
V, is S{w)], we have the distribution

e, w) = L s(t) S*(w)e ™ (3.26)

V2r
which is Eq. (2.2).

C. Ville-Moyal Method and Generalization

The Ville [194] approach is conceptually different and
relies on traditional methods for constructing distributions
from characteristic functions, although with a new twist.
Ville used the method to derive the Wigner distribution but
did not notice that there was an ambiguity in his presen-
tation and that other distributions can be derived in the
same way. As previously mentioned, Moyal [143] used the
same approach.

Suppose we have a distribution P(t, ) of two variables t
and w. Then the characteristic function is defined as the
expectation value of e */, that is,

M@, 1) = (eftimy = Sg eMHirp(t, w) dt dw.  (3.27)

It has certain manipulative advantages over the distribu-
tion. For example, the joint moments can be calculated by
differentiation,

1 n+m

ad
"™y = P M@, 7 (3.28)

8,7=0

By expanding the exponential in Eq. (3.27) it is straightfor-
ward to show
= = ongiom
Mo, = x5 YLUDZ o

n=0m=0 nim! ’ (3.29)

which shows how the characteristic function can be con-
structed from the joint moments. In general the charac-
teristic function is complex. However, not every complex
functionisacharacteristic function since itmust bethe Fou-
rier transform of some density. We point out that there are
cases where the joint moments do not determine a unique
distribution.

The distribution function may be obtained from M(, 7)
by Fourier inversion,

Pt, w) = 4%"2 SS M@, e =™ dg dr. (3.30)

Is it possible to find the characteristic function for the sit-
uation we are considering and hence obtain the distribu-
tion? Clearly, it seems, we must have the distribution to start
with. Recall, however, that the characteristic function is an
average. Ville devised the following method for the cal-
culation of averages, a method that is rooted in the quan-
tum mechanical method of associating operators with ordi-
nary variables. If we have a function g(t) of time only, then
its average value can be calculated in one of two ways,

PROCEEDINGS OF THE IEEE, VOL. 77, NO. 7, JULY 1989



directly using the signal or by way of the spectrum, that is,

(g0 = S Is(0)%g.(t) dt

d
= S S5*(w) g1<j d—w> S(w) dw. (3.31)

This is easy to show by assuming that the function g4(t) can
be expanded in a power series. Therefore in the frequency
domain time is “represented’’ by the operator jd/dw. Sim-
ilarly for a function of frequency only, g,(w), its average value
can be calculated by

It

{ galw)) S |S(@))? galw) dw

. d
S s*(t) gz<-/ Ft) s(t) dt. (3.32)

and hence frequency becomes the operator —jd/dt in the
time domain.

Therefore we can associate time and frequency with the
operators 3 and ‘W so that

I

d
It W - ~j p in the time domain

3 - jad; W= w in the frequency domain.

But what if we have a function g(t, w) of time and frequency?
How do we then calculate its average value? Ville proposed
that we do it the same way, namely, by using

(glt, w)) = S s*(t) G(t, W) s(t) dt (3.33)

in the time domain and

(gt, w)) = S S*w) G(3, w) S(w) dw (3.34)

in the frequency domain, where G(3, ‘W) is the operator
““associated” with or ““corresponding’’ to g(t, w). Since the
characteristic function is an expectation value, we can use
Eq. (3.33) to obtain it, and in particular,

M@, 1) = (e®*iy - gs*(t)e/"“"""s(t) dt.  (3.35)

We now proceed to evaluate this expression. Because the
quantities are noncommuting operators,

IW — W3 =j (3.36)

one has to be careful in manipulating them. To break up
the exponent, one can use a special case of the Baker~Haus-
dorf [201] theorem

e/BSﬂrW — e—;aﬂze,vwews = e/01l2€jﬂﬂeyr‘w‘ (3.37)

The operator e/™ is the translation operator,
e™s(ty = e™¥Ms(t) = s(t + 1) (3.38)

and substituting into Eq. (3.35) we have

M@, 1) = S sx(t) e¥2ePis(t + 1) dt. (3.39)

Making the change of variables u = t + }7, du = dt, we
obtain

1 )
M@, 1) = S s*(u =3 1> elfus (u + %r) du. (3.40)
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Inverting as per Eq. (3.30), we obtain the distribution

P(t, @) = 4%1-2 SSS s*<u - %r)e"’”s(u + %T)

- e =i dg dr du. (3.41)

The 6 integration gives a delta function, and hence

1 1 :

- — * _ —jTe _

P(t, w) o gg S <u 2 -r>e S(u — t)
1

. s(u + §T> dr du (3.42)
1 1 , 1

_-— * — - —jTw -
7r S s <t 2 T)e S(t + 2 7> dr  (3.43)

which is the Wigner distribution.

It was subsequently pointed out [58], [132] that there is
an inherent ambiguity in the derivation because the char-
acteristic functions written in terms of the classical vari-
ables allow many operator correspondences. The method
was generalized by devising a simple method to generate
correspondences and distributions [58]. Instead of

elft+ire _y of83+jrW (3.44)
which is called the Weyl correspondence, we could take

eft+ite _ oib3giT™W (3.45)
or

Tty o™ W 63 (3.46)

which are called normal ordered correspondences. The
symmetrical correspondence is the average of the two,
e/0t+jrm - %(ejﬂﬁeirw + e/1wej03). (347)
There are many other expressions which reduce to the left-
hand side when operators 3 and ‘W are not considered
operators but ordinary functions. The nonunique proce-
dure of going from a classical function to an operator func-
tion is called a correspondence rule, and there are an
infinite number of such rules [58]. Each different corre-
spondence rule will give a different characteristic function,
which in turn will give a different distribution. If we use the
correspondence given by Eq. (3.46), we obtain

I

M@, 7) S s*(t) e/™es(t)

I

S s*(t) et st + 1) dt

= S s*(t — 7) e™s(t) dt. (3.48)

Inverting to get the distribution we have
1 .
P(t, w) = e SSS s*(u) et sy + 7)
- eI df dr du (3.49)

1 )
= —s(t) S s*t — e ™ dr
27

1 .
—\/72—~; s(t) e S *(w) (3.50)
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which is the Rihaczek distribution, Eq. (2.2). If we use Eq.
(3.45) instead, we get the complex conjugate of Eq. (3.50),
and if we use Eqg. (3.47), we get the real part.

Another way to get the correspondence is by associating
arbitrary mixed products of time and frequency [58]. That
is, we associate

t"w™ — C(3, W) (3.57)

where C(3, ‘W) indicates a correspondence, and then we
calculate the characteristic function from Eq. (3.29). Once
the characteristic function is determined, the distribution
is obtained as above. Many correspondences of the form
given by Eq. (3.51) have been proposed. An early one was
that of Born and Jordan [33). When the above-mentioned
procedureis carried out, one obtains adistribution with the
kernel [58]

P
sin 3071

@, 1 = 3.52)

30

which has some interesting properties [58], [51], [76], [26],
{1231

Hence one way to approach the problem of obtaining a
joint distribution is to write the totality of possible corre-
spondences for the characteristic function and repeat the
above calculation. The reason for the wide choice is that the
time and frequency operators do not commute, and hence
a number of different rules are possible. A general pro-
cedure for associating functions with operators has been
developed and has been used in a number of different fields.
To an ordinary function g(t, w) one associates the operator
G(3, ‘W) in the following manner [58], [132], [181]:

G@3, W) = ” v0, 7) 68, Ne™®* ™ dg dr  (3.53)

where
1 I
¥, 1) = ZP SS g, w)e I dt dw (3.54)
or, equivalently,
1
W) = —
G(3, W) e SS 8(t, w) ¢, 7)
- @fO-0HMW=w) gy dr dt dw  (3.55)

where ¢(6, ) is an arbitrary function that satisfies ¢(6, 0) =
¢(0, 7) = 1. The reason for imposing this condition is that
it assures that functions of t or w only transform according
to

gt = £43),  galw) = §o(W). (3.56)

Now if this procedure is applied to the characteristic
function, we obtain the general correspondence

eI — (6, eI (3.57)

Substituting this into Eq. (3.33), we have, as before,

M@, 7 = ¢, 7) S s*(u - %‘r) e"’“s(u + %-r) du

(3.58)

“Although this kernel and the corresponding distribution are
sometimes attributed to Born and Jordan, they never considered
joint distributions or kernels. It was derived in [58] using the cor-
respondence of Born and jordan.

and inverting using Eq. (3.30), we obtain the general class
of distributions, Eq. (2.4).

The formalisms possible with this approach and the rela-
tion to classical theory has been analyzed by Groblicki
[84],Srinivas and Wolf [181), and Ruggeri [171].

D. Local Autocorrelation Methods

A general approach to deriving time-dependent spectra
is by generalizing the relationship between the power spec-
trum and the autocorrelation function. The concept of a
local autocorrelation function was developed by Fano [72]
and Schroeder and Atal [175], and the relationship of their
work to time-varying spectra was considered by Ackroyd
[2], [3]. A local autocorrelation method was used by Lam-
pard [122] for deriving the Page distribution, and subse-
quently other investigators have pointed out the relation
to other distributions. The basic idea is to write the energy
density spectrum as

2

[S(w))? s(he ™t dt

&

1 H s*(t') s(e’ =0 dt’ dt.

2 (3.59)

By making the transformation 7 = t — t’, dr = —dt’, we have

|S(w)|? = 21—1 SS s*(t — 1) s(the " dr dt

=L S R(me ™ dr (3.60)
2%
where the autocorrelation function is defined as
R(r) = S s¥ )y st + 7y dt = S s*(t — 1) s(t) dt
1 1
= * - = - . .
Ss(t 2>s<t+2‘r>dt (3.61)

One generalizes the relationship between the energy
spectrum and R(r) as given by Eq. (3.60) by assuming that
we can write a time-dependent power spectrum, that is, a
joint time-frequency distribution, as

1
Pt @) = — S R(n)e™ " dr (3.62)
2r
where now R,(7) is a time-dependent or local autocorrela-
tion function. Many expressions for R(r) have been pro-
posed, and we illustrate some of the possibilities before

generalizing. One can simply take
R(7) = s(t) s*(t + 7) (3.63)

which, when substituted into Eq. (3.62), yields the Rihaczek
distribution. Mark [138] argued for symmetry,

Ry = st =10) st
(1) = s er 27

which gives the Wigner distribution. Mark pointed out that
one could consider a more general form,

Rfr) = s*(t — k7) s[t + (1 — k)7l

(3.64)

(3.65)

He preferred the value of k = } because for the autocor-
relation function we have R(r) = R*(—17), and if we want the
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same to hold for the local autocorrelation function
Ry(7) = R;'(f'r) (3.66)

then the value of k = 1 must be chosen. However, there are
an infinite number of other forms that can be obtained. A
generalized time-dependent autocorrelation function can
be defined from the general distribution, Eq. (2.4), as was
done by Choi and Williams [51]. Comparing Eq. (2.4) with
Eqg. (3.62), the generalized time-dependent autocorrelation
function is

1 ; 1
- jolu—-o * - =
R(7) 2 SS e b0, 7) s <u 2 7>

. s<u + %T) du dé. (3.67)

The above special cases can be obtained by particular
choices of the kernel function.
It is convenient to write this as

1 * 1 1
R,(T)=§Sr(u—t,1)s <u—27>s<u+zr>du

(3.68)

where

ru, 7 = S e®e, 7) df. (3.69)

We now ask, for what types of kernels does the local auto-
correlation function satisfy Eq. (3.66)? Taking the complex
conjugate of Eq. (3.67) and substituting —7 for 7, we have

v 1
RI(-7 = 4%2 SS e px(—g, —7) s*(u -5 T>
. s<u + %r) du db. (3.70)

Therefore if we want Eq. (3.66) to hold, we must take
o0, 1) = ¢*(—0, —7). (3.71)

What is interesting about this relation is that it is the
requirement for the distribution to be real, as discussed in
Section IV.

Choi and Williams [51] devised a very interesting way to
understand the effects of the kernel by examining the local
autocorrelation function. They point out that since the main
interest in these distributions is to study phenomena that
are occurring locally, we want to give a relatively large
weightto s*(u — 19 s(u + }7) when u is close to t; otherwise
we would not be emphasizing the events near time t. Choi
and Williams used this concept very effectively in devising
a new distribution. The importance of their work is that it
gives a fresh perspective and a concrete prescription for
obtaining distributions with desirable properties. They have
unified these concepts by way of the time-dependent auto-
correlation function and generalized ambiguity function
[63], (58], [76]. We discuss their distribution in Section
1-G.

E. Pseudo-Characteristic Function Method and General
Bilinear Class

We have seen in Section II-C how Ville’s method is gen-
eralized to obtain an infinite number of distributions. We
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now give an alternative derivation which avoids operator
concepts and depends on the relationship between the
characteristic function of two variables and the character-
istic functions of the marginals. Suppose we have a joint
distribution of P(t, w) and that their marginals are given by

Pty = S Pt, w) dw, Pyw) = S P(t, w) dt. (3.72)

The characteristic functions of the marginals are

My(6) = S Pty dt,  Mylr) = S e™Pyw) dw  (3.73)
and comparing with Eq. (3.27), we have
M@, 0) = M,(0), M, 1) = My(7). (3.74)

Now suppose a characteristic function satisfies the mar-
ginals, that is, Eqs. (3.74). Then

Muewl®, 7) = 00, 7) MO, 7) (3.75)
will also satisfy them if we take
#0, 1) = ¢0,0 = 1. (3.76)

Therefore any characteristic function, if multiplied by a
function satisfying Eq. (3.76), will produce a new charac-
teristic function which will also satisfy the marginals. If we
take Eq. (3.40) as the ‘“original’’ characteristic function, then
a whole class is obtained from

M@, 1) = 66, 7 S s*<u - % ‘r> e’s“s<u + %r) du

(3.77)

which when substituted into Eq. (3.30) yields, as before, the
general class of distributions, Eq. (2.4).

We emphasize that even though we have been using the
terminology “‘characteristic function,” they are not proper
characteristic functions since Eq. (3.75) is not a sufficient
condition. They should properly be called quasi- or pseudo-
characteristic functions. We also point out that the choice
of Eq. (3.40) for M(6, 7) in Eq. (3.75) is arbitrary.

F. Positive Distributions

The question of the existence of manifestly positive dis-
tributions which satisfy the marginals has been a central
issue in the field. Many ““proofs’’ have been given for their
nonexistence, and for a long time it was generally believed
that they did not exist. The uncertainty principle was often
invoked to make it reasonable that positive distributions
cannot exist. Mugur-Schachter [144] has shown where the
hidden assumptions in these proofs have creptin. Also, Park
and Margenau [154] have made a far-reaching study of the
relation of joint measurement, joint distributions, and the
existence of positive distributions. Positive distributions do
exist, and it is easy to generate an infinite number of them
[62]. Choose any positive function Q(u, v) of the two vari-
ables u, v such that

1 1
S Qu, v) dv =1, So Au, v) du =1 (3.78)
0

and construct
P(t, @) = |S()[*s®)*u, v). (3.79)
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For u and v we now substitute

w

t
ult) = § Is)2 dt’,  viw) = S- ISW))? dw’.  (3.80)

To show that the marginals are satisfied, we integrate with
respect to w,

S P(t, w) dw = |s(t)]? S |S()|"Qu, v) dw
1

= |s@|? So Qu, v) dv = [s(B)>.  (3.81)

The last step follows since dv = |S(w)|? dw; similarly for inte-
gration with respect to t. Functions satisfying Eq. (3.78) can
readily be constructed. It has been shown that this pro-
cedure generates all possible positive distributions [73],
[176]. We note that the positive distributions are not bilinear
in the signal and that in general Q(u, v) may be a functional
of the signal. The relation of bilinearity to the question of
positivity is discussed in the conclusion. The kernel which
generates the positive distributions from Eq. (2.4) can be
obtained [62].

Whether any of these positive distributions can yield
intensities that conform to our expectations has been ques-
tioned. Janssen and Claasen [101] have pointed out that no
systematic procedure exists for choosing a unique Q(u, v).
That of course is also true with the bilinear distributions.
Janssen [102a] has argued that the positive distributions
cannot satisfactorily represent a chirplike signal, aithough
it has been noted [102b] that it can if the kernel is taken to
be signal dependent. The problem of constructing a joint
distribution satisfying the marginals arises in every field of
science and mathematics and is one of the major problems
to be resolved. There are in general an infinite number of
joint distributions for given marginals, although their con-
struction is far from straightforward. Because the marginals
do not contain any correlation information, other condi-
tions are needed to specify a particular joint distribution.
That information is entered by way of ©, although a sys-
tematic procedure for doing so has not been developed. In
the case of signal analysis and quantum mechanics there
is the further issue of dealing with a signal (or wave func-
tion) and constructing the marginal from it. The two mar-
ginals Is(®)|? and IS(w)|2 do not determine the signal. This
was pointed out by Reichenbach [166], who attributes to
Bargmann amethod for constructing different signals which
have the same absolute instantaneous energy and energy
density spectrum. Vogt[195] and Altes [7] give similar meth-
ods of constructing such functions. Since the signal con-
tains information that the marginals do not, in general Q(u,
v) must be signal dependent. The question of the amount
of information needed to construct a unique joint distri-
bution, and of how much more information the signal con-
tains than the combination of the energy density and spec-
tral energy density, requires considerable further research.

G. Choi-Williams Method

A new and novel approach has recently been presented
by Choi and Williams [51] where they address one of the
main difficulties with the Wigner distribution. As we have
already seen from Fig. 1(a), the Wigner distribution some-
times indicates intensity in regions where one would expect

950

zero values. These spurious values, which are due to the
so-called cross terms, are particularly prevalent for multi-
component signals [26], [41], [51], [91], [141]. The cause of
these effects, sometimes called ““artifacts,” is usually attrib-
uted to the bilinear nature of the distribution, and it was
felt by many that it is something we have to live with. In the
case of the Wigner distribution, extensive studies have been
made and methods devised to remove them in some way.
This usually involves violating some of the desired prop-
erties like the marginals. Choi and Williams argue that
instead of devising procedures to eliminate them from the
Wigner distribution, let us find distributions for which the
spurious values are minimal. Choi and Williams succeeded
in devising a distribution that behaves remarkably well in
satisfying our intuitive notions of where the signal energy
should be concentrated, and that reduces to a large extent
the spurious cross terms for multicomponent signals. Also,
the desirable properties of a distribution are satisfied.

Following Choi and Williams we consider a signal made
up of components s,(t),

N
st = 2 silo) (3.82)

Substituting this into the general equation, Eq. (2.4), we can
write the distribution as the sum of self and cross terms,

N N
Pt w) = X Pult, @) + 2 Pult,@)  (3.83)
Ik

where

1 —jft ~ jrw u
Pult, ) = 7 SH e Btiretbugg 1)

- sp <u - % 'r> 5,<u + % 7> du dr do. (3.84)

Choi and Williams [51] realized that by a judicious choice
of the kernel, one can minimize the cross terms and still
retain the desirable properties of the self terms. This aspect
is investigated using a generalized ambiguity concept [63]
and autocorrelation function, as in Section Ill. They found
a particularly good choice for the kernel,

66, 1) = e "7 (3.85)

where o is a constant. Substituting into Eq. (2.4) and inte-
grating over 8, one obtains

1 1 _ 2ar2a) — i 1
P, t/ — S S e (u ~ H(4r20)] jrogx[ ¢ — —
et = 2 ) ) T 27

. s<u + % r> du d7. (3.86)

The ability to suppress the cross terms comes by way of con-
trolling o. The rcw(t — u, 7), as defined by Eq. (3.69), is

~lfu ~ dro)) (3.87)

1
riu t, 7) m e
From the discussion of Section 1l1-D we note that indeed
it is peaked when u = t and o can be used to control the
relative importance of 7.

The kernel given by Eq. (3.85) satisfies Eq. (3.71), which
shows that the local autocorrelation function satisfies Eq.
(3.66) and that the distribution is real. In Section IV we use
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FREQUENCY —
(a) (b) ()

Fig. 3. (a) Wigner and (b), (c) Choi-Williams distributions for the sum of two sine waves,
s(t) = e’ + e™*'. The Wigner distribution is peaked to infinity at the frequencies w;, w,
and at the spurious value of w = 3 (w3 + wy). The middle term oscillates and is due to the
cross terms. The Choi-Williams distributions are shown for (b) ¢ = 10° and (c) 0 = 10°.
Note that all three distributions satisfy the marginals. The values for w are w, = 1 and w,
= 9, The delta functions at w, and w, are symbolically represented and are cut off at the

value of 700.

this kernel as an example to demonstrate how the general
properties of a distribution can be readily determined by
inspection of the kernel.

The importance of the work of Choi and Williams is that
they have formulated and implemented effectively ameans
of choosing distributions that minimize spurious values
caused by the cross terms. Moreover they have connected
in a very revealing way the properties of a distribution with
that of the local autocorrelation function and characteristic
function. The kernel given by Eq. (3.85) is a one-parameter
family, but their method can be used to find many other
kernels having the general desirable properties.

We give three examples to illustrate the considerable
clarity in interpretation possible using the distribution of
Choi and Williams. We first take the sum of two pure sine
waves,

s(t) = Ae™ + Ajel. (3.88)
The Choi-Williams distribution is readily worked out [51],
Pewl(t, @) = A0 — w) + A2w — wy) + 2A.A,
+ €0s (w; — wt p(w, wy, wy, 0) (3.89)
where

1

An(w, — wp)lo

{ lw — Hwy + wznz}
cexp)—————— . (3.90)

Nw, wy, wy, 0) =

Ay — wy)¥a

We first note that

lim glw, wy, w2, 0) = 8w — Hwy + w))] (3.91)

oo
and for that case the distribution becomes infinitely peaked
at w = 3w, + w,). In fact, as ¢ = o, it becomes the Wigner
distribution, since for that limit the kernel becomes 1. As
long as ¢ is finite, the cross terms will be finite at that point
and willincrease as Vo. Note that if o is small, the crossterms
are small and do not obscure the interpretation with spu-
rious values. In Fig. 3 we illustrate the effect of 6. We have
represented the delta function symbolically, but the cal-
culation for the cross terms is exact. We see that the cross
terms may easily be eliminated for all practical purposes by
choosing an appropriate value of o.

Another revealing example is the sum of two chirplike

signals [51],

1/4
o —ant? 2
S([) = A1(—> e a1ty2 + [BitH2 + junt
T

174
+A2<(—!—2> @2+ B2 + juat (3.92)
T

which have instantaneous frequencies along w = 8¢ + w;
and v = B,t + w,. We expect the concentration of energies
to be along the instantaneous frequencies. Fig. 4 is a plot
of the Wigner and the Choi-Williams distributions. Note
the middle hump in the Wigner distribution. On the other
hand, the distribution of Choi and Williams is clear and eas-
ilyinterpretable. We emphasize that the distribution of Choi
and Williams satisfies the marginals for any value of ¢.

FREQUENCY —

(a) (b)

Fig. 4. (a) Wigner and (b) Choi-Williams distributions for the sum of two chirps. The Wig-
nerdistribution has artifacts and spurious values in between the two concentrations along
the instantaneous frequencies of the chirps. In the Choi-Williams distribution the spu-
rious terms are made negligible by an appropriate choice of o.
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FREQUENCY
(@ (b)

Fig. 5. (a) Wigner and (b) Choi-Williams distributions for
signal s(t) = A,e/S12¥iat 4 A glatrifsinumt Both distri-
butions show concentration at the instantaneous frequen-
ciesw = w; + Bitand w = w, + byw,, COs w,, t. For the Wigner
distribution there are spurious terms in between the two
frequencies. They are very small in magnitude in the Choi-
Williams distribution.

In Fig. 5 we show the Wigner and Choi-Williams distri-
butions for a signal that is the sum of a chirp and a sinu-
soidal modulated signal,

s(t) = A1em'“’2+/“’“ + AIe[w2[+j625inwmt. (3.93)

For both distributions we see a concentration along the
instantaneous frequencies; however, for the Wigner dis-
tribution there are “interference’” terms which are very
minor in the Choi-Williams distribution.

IV. UNIFIED APPROACH

As can be seen from the preceding section, there are many
distributions with varied functional forms and properties.
A unified approach can be formulated in a simple manner
with the advantage that all distributions can be studied
together in a consistent way. Moveover, a method which
readily generates them allows the extraction of those with
the desired properties. As we will see, the properties of a
distribution are reflected as simple constaints on the ker-
nel. By examination of the kernel one can determine the
general properties of the distribution. Also, having a gen-
eral method to represent all distributions can be used

Table 1 Some Distributions and Their Kernels

advantageously to develop practical methods for analysis
and filtering, as was done by Eichmann and Dong [70]. Excel-
fent reviews relating the properties of the kernel to the
properties of the distribution have been given by Janse and
Kaizer [97], Janssen 98], Claasen and Mecklienbrauker [56],
and Boashash [26).

For convenience we repeat the general form here,

P, w) = # HS e it tibug(g, 7)

. s*(u - % 'r> s<u +%T> du drdf. (4.1)

The kernel can be a function of time and frequency and in
principle can be a function of the signal. However, unless
otherwise stated, we shall here assume that itisanotafunc-
tion of time or frequency and is independent of the signal.
Independence of the kernel of time and frequency assures
that the distribution is time and shift invariant, as indicated
below. If the kernel is independent of the signal, then the
distributions are said to be bilinear because the signal enters
only twice. An important subclass are those distributions
for which the kernelis a function of 67, the product kernels,

&0, 1) = dprlf7). (4.2)

For notational clarity, we will drop the subscript PR since
one can tell whether we are talking about the general case
or the product case by the number of variables attributed
to ¢(9, 7). In Table 1 we list some distributions and their cor-
responding kernels.

The general class of distributions can be expressed in
terms of the spectrum by substituting Eq. (1.3) into Eq. (2.4)
to obtain

P(t, Cd) — l 555 e—j0l—jru+/1u¢(0’ T)

472

. S*(u +%9> S<u —%9) du dr df. (4.3)

Reference Kernel ¢4, 1) Distribution P(t, w)
1
Wigner [199}, Ville [194] 1 Z» S e s*(t — %T) st + %‘r) dr
1
Margenau and Hill [133] cos % o7 Re E s(t) e/ §*(w)
: 1
Kirkwood [107], Rihaczek [167] e/t/? Wi s(t) e /™ S*(w)
T
. sin afr 1 S 1 S'”’ T ;
LI WL *y — 1 1 d
sinc [58] _—a(h ol B e e s*u - 37 slu + 37 dudr
ool /2 a1 S' I
jéir —_ t —jet gy
Page [152] e AN = s(t) e ‘
. b —6212 ) 1 .
Choi and Williams [51] e e ‘H \@ oo 0/ = re ga(yy _ 17
< s(u + %T) dudr
; 1 2
Spectrogram E h*u - 1 e 7™ IE S e~ s(7) h(r — t) d7

h(u + 1) du
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The best practical method to determine the kernel for a
given distribution is to put itinto the form of Eq. (4.1). Oth-
erwise one can calculate the kernel from

S efftritep(t, w) dt dw

#@, 7 = 4.4

S efusx(y — 10 su + 37) du

which is obtained from Eq. (4.1) by Fourier inversion. It is
also convenient to define the cross distribution function for
two signals, as was done by Eq. (3.84). The main reason for
defining it is that the distribution of the sum of two signals

S(t) = s4(t) + sy(t) (4.5)
can be conveniently written as
P(t, w) = Pylt, w) + Pyult, @) + Pilt, @) + Pylt, w).
(4.6)

If s,(t) and s,(t) are each normalized to 1, then an overall
normalization may be inserted so that s(t) and the distri-
bution are normalized to 1.

A. Physical Properties Related to Kernel

We now show how the properties of the distribution are
related to the properties of the kernel. We shall give only
afew derivations to indicate the general approach since the
procedures are fairly simple.

Instantaneous Energy and Spectrum: If P(t, ) is to be a
joint distribution for the intensity, we want it to satisfy the
individual intensities of time and frequency. That is, when
the frequency variable is integrated out, we expect to have
the instantaneous power |s()|?, and similarly when time is
integrated out, we expect to have the energy density spec-
trum |S(w)|* Integrating Eq. (4.1) with respect to » we have

S P(t, ) dw = 1 Sgg 8(r) e ~0¢(0, 1)
27

s*<u - %r)s(u + = r> df du dr
4.7)
= 21—” H e =9, 0)|s(u)|* db du. (4.8

The only way this can be made equal to |s(9)|? is if

21—” S e, 0) df = &(t — u) (4.9)
which forces
¢, 0 = 1. (4.10)
Similarly, if we want
S Pt, w) dt = |S(w)|? 4.11)
we must take
o0, 1) = 1. (4.12)

Italso follows that if the total energy is to be preserved, that
is,

S P(t, w) dw dt = 1 = total energy (4.13)
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we must have
60,0 =1 4.14)

which is called the normalization condition. We note that
this condition is weaker than the conditions given by Eqs.
(4.10) and (4.12), that is, it is possible to have a joint distri-
bution whose total energy is the same as that of the signal,
but whose marginals are not satisfied. An example of this
is the spectrogram discussed in Section VI.

Reality: The bilinear distributions are not in general pos-
itive definite, which causes serious interpretive problems.
It has been generally argued that at least they should be
real. By taking the complex conjugate of Eq. (4.1) and com-
paring it to the original, it is straightforward to show that
anecessary and sufficient condition for a distribution to be
real is that the kernel satisfy

o0, 1) = ¢*(—0, —7). (4.15)

Time and Frequency Shifts: If we translate the signal by
an amount t;, we expect the whole distribution to be trans-
lated by the same amount. Letting s(t) = 5,,(t) = s(t + tp) and
substituting in Eq. (4.1), we have

Pylt, @) = 4%2 HS e B9 7)

‘5‘<u—%T+t0>s<u+%7'+to>d0d7du

(4.16)
= LZ SSS =0t~ jre + jO(u — to)¢(0 7)
4T
(u -z 7> s<u + = r> db dr du (4.17)
1 SSS — Ot + to) ~ jrw + jBu
=— et itg(@, 7)
4

. s*<u - %T) S(u + = 'r> df dr du (4.18)

P(t + tg, ). (4.19)

Hence a shift in the signal produces a corresponding shift
in the distribution. We note that the proof requires that the
kernel be independent of time and frequency. A similar
result holds in the frequency domain, that is, if we shift the
spectrum by a fixed frequency, then the distribution is
shifted by the same amount. If

S(w) = S(w + wp) or  s( > s(he " (4.20a)

then
P(t, w) = P(t, @ + wp). (4.20b)

Global and Local Quantities: If we have a function g(t, w)
of time and frequency, its global average is

(glt, w) = SS g(t, w) P(t, ) dw dt. (4.21)

The local or mean conditional value, the average of g(t, w)
at a particular time, is

(glt, W) = S g(t, w) P(t, w) dw (4.22)
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where P(t) is the density in time,
Pyt = S P(t, w) dw 4.23)

and is equal to |s(t)|” if Eq. (4.10) is satisfied. Similar equa-
tions apply for the expectation value of a function at a par-
ticular frequency.

Mean Conditional Frequency and Instantaneous Fre-
quency: The local or mean conditional frequency is given
by

; S
=_— P(t, w) dw. 4.24
(W), PO wP(t, w) dw (4.24)
We have avoided using the term ‘“instantaneous’ fre-

quency for reasons to be discussed shortly. A straightfor-
ward calculation leads to
1*0j|

- =0 dg du (4.25)

1 ' 360,
(@) Pi) = 5= ” Az(otwe, 0 ¢ - j 202
T ar

where the signal has been expressed in terms of its ampli-
tude and phase,

s(t) = Alt)e’*". (4.26)
For the product kernels this becomes
(@) Py(0) = ¢(0) AX) @'(t) + 2¢'(0) AL A'()  (4.27)

where the primes denote differentiation.
We must now face the question as to what we want this
to be equal to. First we note that if we take

¢, 0 =1, %;7) ) =0 (4.28)

in Eq. (4.25) or
$0) =1 ¢0 =0 (4.29)
in Eq. (4.27), we then have Py(t) equaling A(t) and we obtain
(@) = ¢'(0 (4.30)

a pleasing result reminiscent of the usual definition of
instantaneous frequency. But it is not. Instantaneous fre-
quency is the derivative of the phase if the analytic signal
is used (see Section VIII). Equation (4.30) is true for any sig-
nal. Moreover, even though instantaneous frequency is
meaningfully defined for certain types of signals [79], [153],
[168], [191], this result is for all signals. It has been specu-
lated [21], [56] that this indicates a method for a general def-
inition of instantaneous frequency which will hold under
all circumstances. However, considerably more work has
to be done to fully develop the concept. Conversely, Boas-
hash [26] has argued that since Eq. (4.30) corresponds to the
instantaneous frequency only when the analytic signal is
used, we should always use the analytic signal in these dis-
tributions. These issues are discussed at greater length in
Section VIII.

Correlation Coefficient and Covariance: The covariance
and the correlation coefficient very often afford much
insight into the relationship between two variables. An
application of this is given in Section V, where we apply
these ideas to the Wigner distribution. For quasi-distri-
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butions the covariance was considered first by Cartwright
[46]. The covariance is defined as

Cov (tw) = (tw) — (t){w) (4.31)
and the correlation coefficient by

Cov (tw)
r=—

010,

(4.32)

where o, and g, are the duration and the bandwidth of a
signal as usually defined [Eq. (8.10)]. The simplest way to
calculate (tw) is to use Eq. (3.29) with Eq. (3.77),

M@, 7)

(@) = ~50ar

= S to'() AXD) dt.  (4.33)
6,7=0
This is an interesting relation because the derivative of the
phase is acting as the frequency. We should emphasize that
the covariance and the correlation coefficient, as used here,
do not always have the same behavior as their standard
counterparts because the distribution is not necessarily
positive definite.

Spread and Second Conditional Moment: Having
obtained a reasonable result for the mean frequency at a
particular time, it is natural to ask for the spread or broad-
ness of frequency for that time. This was done by Claasen
and Mecklenbrauker [54] for the Wigner distribution case
in the signal analysis context, and by others in the quantum
mechanical context [82]. Unfortunately difficulties arise, as
we shall see. First consider the second conditional moment

(Y, = ﬁ S w*P(t, w) do. (4.34)
The calculation of this quantity is important for many rea-
sons. In quantum mechanics it is particularly relevant
because it corresponds to the local kinetic energy. It has
been considered by a number of people who have pro-
posed different expressions for it. It was subsequently
shown that these different expressions are particular real-
izations of different distributions. We give the results for
the product kernels [123],

- 2
2oy _ 1 woy| A0
() = 5 [1+ 49 (0)][/4“)]

- % (1 - 497(0)] % + 0. (435)
Even though in general the second conditional moment
should be manifestly positive, that is not the case with most
of the distributions, including the Wigner distribution. This
makes the usual interpretation of these quantities impos-
sible. However, as we will see below, there are distributions
for which the second conditional moment and the variance
are manifestly positive.
Now consider the spread of the mean frequency at a given
time,

o2y, = S (@ ~ (w))*P(t, ) dw = () — ()i (4.36)
Using Eqgs. (4.35) and (4.29) we have

2
(oD = 111+ agro)| 50
A A |
1 g A0
5 [1 = 48”01 -0 (4.37)
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As before, this expression will become negative for most
bilinear distributions and therefore cannot be interpreted
as a variance. However, consider the choice [123]

¢”(0) = 1. (4.38)
Then the spread becomes
2
.y _ A0
(oede = [A(t)
2
1 1d
= SO [; pri <p'(t)}s(t) (4.39)
which is manifestly positive. Also, for this case,
A 2
s
(W, = [T(r))} + oAt (4.40)

which is also manifestly positive. There are an infinite num-
ber of distributions having this property since there are an
infinite number of kernels with the same second derivative
at zero.

Group Delay: Suppose we focus on the frequency band
around the frequency »’ and assume that the phase of the
spectrum is a slowly varying function of frequency so that
a good approximation to it, around point v, is a linear one
[153], [168],

Yw) = ) + (@ — Y (W) (4.41)
where y(w) is the phase of the spectrum,
Sw) = |S(w)|e/, (4.42)

If we consider a signal that is made up of the original spec-
trum concentrated only around the frequencies w’, then we
have the corresponding signal

V2

- el duw.

S,_,,v(t) ~ S Slw — wr)ef[\b(w')+(w*w')¢'(w’)]

(4.43)

We now write the spectrum in terms of the original signal
as given by Eq. (1.3),

1 o o
Sur(t) =~ ﬂ SS S(tr)el[‘l/(w)+(w—w3¢(w)]

. ejwl*i(u*w’)t' dw dt’ (4.443)
= ei[\&(w’)~w’\l/(m')] S S(t')eiw'l’
S8t + Ylw) + O dt. (4.44b)

Therefore

S (B) = st + Yl())eVIriet

n

s[t + Y'(w)]e™ e, (4.45)

Hence the envelope of the signal at frequency w is
delayed by —y(«w’), and the phase is delayed by —y/(w')/w’.
The delay of the envelope is called the group delay, which
we now write for an arbitrary function w,

ty = —¥'().

From the point of view of joint time-frequency distri-
butions we may think of the group delay as the mean time
at a given frequency. Now by virtue of the symmetry
between Egs. (4.1) and (4.3) everything we have done for the
expectation value of frequency at a given time allows us to
readily write down the corresponding results for the expec-
tation value of time at a given frequency.

In particular,

(4.46)

(o = —¥(w) (4.47a)
if the kernel is chosen such that
60,7 =1, aig% = 0. (4.47b)
0=0

For the case of product kernels the conditions are the same
as that given by £q. (4.29).

Transformation of Signal and Distribution: in Table 2 we
list the transformation properties of the distribution and
the characteristic function for simple transformations of
the signal.

Range of Distribution: If a signal is zero in a certain range,
we would expect the distribution to be zero, but that is not
ture for all distributions. It can be seen by inspection that
the Rihaczek distribution is always zero when the signal is
zero. This is not the case for the Wigner distribution. The
general question of when adistribution is zero has not been
fully investigated. Claasen and Mecklenbrauker [56] have
derived the following condition for determining whether
adistribution is zero before a signal starts and after it ends:

S 6, ne  de =0 for |7| < 2|t|. (4.48)
Even when this holds, it is not necessarily the fact that the
distribution is zero in regions where the signal is zero.

Real and Imaginary Parts of Distributions: If a complex
distribution satisfies the marginals, then so do the complex
conjugate and the real part. The imaginary partindeed must

Table 2 Transformation Properties of Distributions and Characteristic Functions for

Transformations of the Signal

Characteristic

Signal Distribution Function Kernel Product Kernel
Transformation s(t) P(t, w) M@, 1 (0, 7 (07
Time shift st + to) Pt + to, @) M@, 7) e’ Any Any
Frequency shift Sw + wp) or s(e/ P(t, 0 + wg) M@, 1) e /™ Any Any
Time scaling \/m s{at) P <at, 3) M <2, a7> ¢ (2, orr) = ¢, 7) Any
(¢4 o
1 t t T T

Frequency scalin VI8l S(Bw) or _S</_3> P<“, ) M<0'—> <9,—): 6, A

req y scaling 18] S(Bw NE] 66«» 66 ¢Bﬁ (6, 7 ny
Time inversion s(—b P(—t, —w) M(—8, —7) o(—6, —7) = ¢(6, 1 Any
Complex conjugate s*(t) Pt, —w) M@, -1 ¢, —1) = o0, 7 d(—x) = ¢(x)

COHEN: TIME-FREQUENCY DISTRIBUTIONS

955



integrate to zero for each variable, that is,

Im S P(t, w) dt = 0, Im S P(t, w) dw = 0. (4.49)
The complex conjugate distribution
P*(t, ) has the kernel ¢*(—0, —7) (4.50)

and the real part distribution

Re P(t, @) has the kernel 1[¢(6, 7) + ¢*(—6, —7)].

(4.57)

For example, using Eq. (4.51) we see that the kernel of the
real part of the Rihaczek distribution is cos 367.

Example: To illustrate how readily one can determine the
general properties of a distribution by a simple inspection
of the kernel, we use as an example the distribution of Choi
and Williams [51]. The Choi-Williams kernel is

dewld, 1) = e (4.52)
and we see that it is a product kernel,
dewlx) = e ¥ (4.53)

where x = 7. From Eqgs. (4.10) and (4.12) it is readily seen
that the marginals are satisfied, that the mean frequency is
the derivative of the phase [verified using Eq. (4.29)], that
the shift properties are automatically satisfied, and that all
properties and transformations in Table 2 are satisfied since
it is a product kernel.

B. Inversion and Representability

To obtain the signal from a distribution we take the
inverse Fourier transform of Eq. (4.1) and obtain

s*u-—1 su+17
27 2

_1 PX, @) gy + jrio— jou
o S S S 50,7 dx dw df  (4.54)

or

1 P(x,
SHO s =5 SSS ¢(0()§ —C—d)t’)
- @Mt P = O gy oy df. (4.55)

By taking a particular value of t, for instance zero, we have

Hence the signal can be recovered from the distribution up
to a constant phase.

These equations can be written in terms of the gener-
alized characteristic function [58], [63] as defined by Eq.
(3.58),

o, 1 Ty _ P IMEt-8)
s <u 21) s<u+21> 27r§ 50, 7 e do
(4.57)

or

1 S M@, t)

* (47 - — —jo(t + )2 dé .
S*(t') s(f) 27 ) B0 =D e (4.58)
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or

e " dp. (4.59)

s 1 S M@, 1)

T 27570) J 606, O

The preceding relations can be used to determine
whether a signal exists that will generate a given P(t, w). We
call such distributions representable or realizable. A nec-
essary and sufficient [61] condition for representability is
that the right-hand side of Eq. (4.55) or Eq. (4.58) result in
a product form as indicated by the left-hand side.

Nuttall [148] has made an important contribution regard-
ing the reversibility problem. He has been able to char-
acterize the distributions from which the signal can be
recovered uniquely. We note that from a given distribution
the characteristic function M(6, 7) can always be determined
uniquely since it is the Fourier transform of the distribution
as defined by Eq. (3.30). However, to obtain the signal one
has to divide the characteristic function by the kernel ¢(6,
7), which may be zero for some values of 6 and 7. Nuttall [148]
has shown that the signal can be recovered uniquely if the
kernel has only isolated zeros. The number of zeros can be
infinite, or the kernel may be zero along a line in the 6, 7
plane. However, if the kernel is zero in a region of nonzero
area, then the signal cannot be recovered. The basic reason
is that for isolated zeros the ratio M(6, t)/¢(9, t) can be
obtained by taking limits at the points where the kernel is
zero. However, if the kernel is zero in a region, then the
ratio is undefined.

C. Relations Between Distributions

Many special cases relating one particular distribution to
another have been given in the literature. A general rela-
tionship between any two distributions can be derived
readily [61].

Having such a connection allows the derivation of results
for a new distribution in a simple way if the answers are
already known for another distribution. In addition it clar-
ifies the relation between distributions.

Suppose we have two distributions P, and P, with cor-
responding kernels ¢, and ¢,. Their characteristic functions
are

M6, 7) = 0,0, 7) S e’”“s*(u - %T) s<u + % r> du

(4.60)
M6, 1) = 0,6, 7 S e"’”s*<u - % 7> s<u + % r> du
(4.61)
and dividing one by the other we have
M@, 1) = z;z :; My(8, 7). (4.62)

Taking the Fourier transform to obtain the distribution we

have
1 010, D i+ jriw e
P = — XN T jr{w — )
ltw) =4 SS S S 6, 7

< Pyt ') df dr dt’ dw’. (4.63)
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It is sometimes convenient to write this as

Pylt, w) = H glt' — t, & — wPyt’, ) dt' dw’  (4.64)
with
1 o+ jro 910, 7)
- — ot + jrw
g(t, ) an? SS e o0, 7) db dr. (4.65)

A very useful way to express Eq. (4.64) is in operator form.
We note the general theorem [60]

A
4x?

SHS GO, 7 M-I~ OHE, ')y db dr dt’ dw’

e

which, when applied to Eq. (4.63), gives

.0
;= aw> H(t, w) (4.66)

2l

d d

ot

(30730)
¢2 lat//aw

d’w(/

Py(t, w) = Py(t, w). (4.67)

QD

D. Other Topics

Mean Values of Time-Frequency Functions: We have
already defined and used global and local expectation val-
ues. There exists a general relationship between averages
and correspondence rules which has theoretical interest
and is very often the best way to calculate global averages.
One can show [58] that the expectation value calculated in
the usual way

(glt, W) = S g(t, ) P(t, ) dw dt (4.68)

can be short-circuited by calculating instead

(glt, W) = SS*(t) G(3, W) s(t) dt (4.69)

if the correspondence between gand G is given by Eq. (3.55).
Bilinear Transformations: A general bilinear transforma-
tion may be written in the form

Pt, w) = SS K(t, w; X, X') s*(x) s(x") dx dx’  (4.70)

as has been done by Wigner [200], Kruger and Poffyn [114],
and others [90], [130], [170]. By requiring the distribution to
satisfy desirable properties, Wigner obtained the condi-
tions to be imposed on K. If we require that the distribution
be time-shift invariant, then it can be shown [114], [200] that
K must be a function of t — x and t — x’, or equivalently a
function of 2t — x — x” and x — x". In addition if the dis-
tribution is to be frequency-shift invariant, then K must be
of the form

Kt, w; x, x') = e/*=X9K(t, 0; x, x'). .71

Hence kernels which yield time- and frequency-shift in-
variant distributions are of the form {114], [200], [130]

Kit, w; x, X') = el XK 0t — x — x', x = x') (472

where the new kernel K; is only a function of two variables.
By comparing Eq. (4.70) with Eq. (2.4) we have
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—j(x" =X )
K(t, w; x, X) = o S o /82t =x=x)2
0, x" = x) db (4.73)

or
1 N
Kolt, ) = — S e 249, —1) db. (4.74)
47

We note that Kyt, 7) is essentially r(t, 7), as defined in Eq.
(3.69).

Additional conditions imposed on the distribution are
reflected as constraints [90], [114], [170], [200], [130] on K in
the same manner that we have imposed constraints on f(6,
7). However, as shown by Kruger and Poffyn [114], the con-
traints f(8, 7) are much simpler to formulate and express as
compared to those on K, and that is why Eq. (2.4) is easier
to work with than Eq. (4.70). For example, the time- and fre-
quency-shift invariant requirement is imposed by simply
requiring that ¢(6, 7) not be a function of time and fre-
quency.

Characteristic Functions and Moments: We have seen in
Section Il that characteristic functions are a powerful way
to derive distributions. The characteristic function is closely
related to the ambiguity function (see Section VI). We would
like to emphasize that, in addition, characteristic functions
are often the most effective way of studying distributions.
For example, consider the transformation property of the
characteristic function as given by Eq. (4.62) and compare
it to the transformation property of the distributions as
given by Eq. (4.63)

We also point out the relationship of the generalized
characteristic functions and the generalized autocorrela-
tion function. Comparing Eq. (3.67) with Eq. (3.77) we see
that

Ri(r) = 1 S M@, ye 7% de. (4.75)
27

This relation can be used to derive the transformation prop-
erties of the autocorrelation function. If R and R®(7) are
the autocorrelation functions corresponding to two dif-
ferent distributions, then we have

RM(r) = 217 S M,(0, re # de (4.76)
= % S %%_:; M,(0, re ' dg 4.77)
2\V,

where we have used Eq. (4.62). Writing the characteristic
function in terms of the autocorrelation function we have

RM7) = 51; S gt — t') RP(7) dt’ (4.78)
where
_ i 940, 7 —jot
gt = 7 S T e dg. (4.79)

Using the characteristic function, we can also obtain the
transformation of mixed moments. Using Egs. (3.29) and
(4.61),

10" 00 o . @480

tn m =
™ = o 3787 66, ) -
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Some straightforward manipulation yields

m

("w™y, = EO kgo al g hm Rl 4.81)

an—/,m—k — 1 n m
1Lk jn+m71—k | k

) an+m—l-k ¢1(01 7
30'a7% 9,0, 1

where

. (4.82)
0,7=0

These are very convenient relations for obtaining the
moments of a distribution if one has already found them
for another one.

V. WIGNER DISTRIBUTION

The Wigner distribution was the first to be proposed and
is certainly the most widely studied and applied. The dis-
covery of its strengths and weaknesses has been a major
thrust in the development of the field. It can be obtained
from the general class by taking

Sl 1) = 1. (5.1
The Wigner distribution is

1 1 1
- — * - = =jTe -
W(t, w) by S s <t 2 ‘r>e s<t + 2 T) dr  (5.2)

and in terms of the spectrum, it is
Wit w)=—1—55* w+10 e"'65<w—10>d0 (5.3)
’ 27 2 2 o

A. General Properties

Becausethe kernelisequalto 1, the properties of the Wig-
ner distribution are readily determined. Using the general
equations of Section IV, we see that the Wigner distribution
satisfies the marginals, that it is real, and that time and fre-
quency shifts in the signal produce corresponding time and
frequency shifts in the distribution. Since the kernel is a
product kernel, all the transformation properties of Table
2 in Section 1V are seen to be satisfied.

The inversion properties are easily obtained by special-
izing Eqgs. (4.54)-(4.56) for the case of ¢ = 1,

1 1
* - = — = jrw
S <t 2 >s<t + 2 T> S W(t, w)e’™ dw (5.4)
s*(t)s(t) = S W[% t' + 0, wjleﬂt~l’)w dw

(5.5)

s() = S W<1 t, w>e"‘" dw. (5.6

1
s*(0) 2

Mean Local Frequency, Group Delay, and Spread: Since
the kernel for the Wigner distribution is 1, we have from

£q. (4.28)
@y =¢ if  s) = A@e. (5.7)

From Eqgs. (4.35) and (4.37), the local mean-squared fre-
quency and the local standard deviation are given by

1AW 1A
(wy, = E [—/ﬁ] - E?(t)z + 1) (5.8)
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(oD = {w?y — (w)f (5.9)
’ 2 ”
- 1[&} _1A™ (5.10)
2 | A(®) 2 A

a resulit obtained by Claasen and Mecklenbrauker {54]. As
they have pointed out, it generally goes negative and can-
not be interpreted properly.

B. Range of Wigner Distribution

From the functional relation to the signal one can develop
some simple rules of thumb to ascertain the behavior of the
Wigner distribution [59]. From Eq. (5.2) we see that for a par-
ticulartime we are adding up pieces made from the product
of the signal ata pasttime multiplied by the signal ata future
time, the time into the past being equal to the time into the
future. Therefore to see whether the Wigner distribution
iszero ata point, one may mentally fold the part of the signal
to the left over to the right and see whether there is any
overlap. If so, the Wigner distribution will not be zero, oth-
erwise it will. Now consider a finite-duration signal in the
interval t; to t, as illustrated:

VAAAVAVAVAVAVAVAVAVAAVAVAAVAVAVAVAVAVAVAVAY)
t ty

If we are any place left of t; and fold over the signal to the
right, there will be no overlap since there is no signal to the
left of ¢, to fold over. This will remain true up to the start
of the signal at time t;. Hence for finite-duration signals, the
Wigner distribution iszero up to the start. This is adesirable
feature since we should not have a nonzero value for the
distribution if the signal is zero. At any point to the right
of t; but less than t,, the folding will result in an overlap.
Similar arguments hold for points to the right of t,. There-
fore for a time-limited signal, the Wigner distribution is zero
before the signal starts and after the signal ends, that is,

Wit,w)=0 fort<t; or t=t, ifs(t)isnonzero

only in the range (¢, t;). (5.11)

Due to the similar structures of Egs. (5.2) and (5.3), the
same considerations apply to the frequency domain. If we
have a band-limited signal, the Wigner distribution will be
zero for all frequencies that are not included in that band,

Wit,w) =0 forw=w or w=w ifSw)isnonzero

only in the range (w;, w;). (5.12)

These properties are sometimes called the support prop-
erties of the Wigner distribution.
Now consider a signal of the following form:

WVAVAVAAVAVAVAVAY, AAAVAVAVAVAVAVAVAY)
ty tz ta i3

where the signal is zero from ¢, to 3, and focus on point t,.
Mentally folding the right and left parts of t, it is clear that
there will be an overlap, and hence the Wigner distribution
is not zero even though the signal is. In general the Wigner
distribution is not zero when the signal is zero, and this
causes considerable difficulty in interpretation. In speech,
forexample, there are silences which are important, but the
Wigner distribution masks them. These spurious values can
be cleaned up by smoothing, but smoothing destroys some
other desirable properties of the Wigner distribution.
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Range of Cross Terms: Similar considerations apply to the
cross Wigner distribution. In particular, for any two func-
tions s4(t) and s,(t) which are zero outside the intervals (t,,
t,) and (t3, t,), respectively, the cross Wigner distribution is
zero for the ranges indicated [60], [92a], [92b]

1 1 —ires 1
W12(t,w)=ﬂgs§‘<t—i~r>e/ sz<t+ir>dr=0

ift < %(n + ) t= %(t2 +ty). (5.13)

in the frequency domain we have that for two band-limited
functions S,(w) and S,(w), which are zero outside the inter-
vals (wq, wy) and (w3, w,), respectively,

1 1 ) 1
Walt, ) = 5 S 51*<w - 50>e/"‘s2<w + 50) do =0
, 1 1
ifw < 2 (w1 + w3y), @ = 2 (wy + wg). (5.14)

These relationships are useful in calculating the Wigner dis-
tribution for finite-duration signals [60], [92a], [92b].

C. Propagation of Characteristics (e.g., Noise)

Almost every worker who has applied the Wigner dis-
tribution has noticed thatitis “noisy.” Indeed we will show
that in general if there is noise for a small finite time of the
signal, that noise will ““appear” at other times, and if the
signal is infinite, then it will appear for all time. This effect
is a general property of the Wigner distribution that must
be fully understood if one is to develop a feeling for its
behavior. The important point to realize is that the Wigner
distribution at a particular time generally reflects proper-
ties that the signal has at other times because the Wigner
distribution is highly nonlocal.

Consider a finite-duration signal, illustrated below, where
we have indicated by the wavy lines any local characteristic,
but which for convenience we shall call noise:

AAVAVVAAGVAVVAVA L B AGVAVAVTA

ta ty

Suppose we calculate the Wigner distribution at a time
where this characteristic does not appear, say, at point t,.
Folding over the signal, we see that there is no overlap of
the left part of the signal with the noise in the signal, and
hence noise will not appear in the distribution at time ¢,.
Now consider point t,. The overlap will include the noise
in the signal and therefore noise will appear in the distri-
bution, even though there is no noise in the signal at that
time. Now considering a signal that goes from minus infin-
ity to plus infinity, noise will appear everywhere since for
any point we choose, folding over the signal about that point
will always have an intersection with the noise in the signal.
In Fig. 6 we give an example for a finite-duration signal.
Noise appears for times in between the arrows, even though
the noise in the signal was of shorter duration.

D. Examples

Example 1: For signals of the form

14
s(t) = <%) e—ut’/Z +jBt22 + juwot (515)

COHEN: TIME-FREQUENCY DISTRIBUTIONS

@y Wy

FREQUENCY —

Fig. 6. Example illustrating the “propagation” of noise in
the Wigner distribution. Noise (between arrows) appears in
the Wigner distribution at times for which there is no noise
in the signal. If the signal was of infinite duration, noise
would appear for all time in the Wigner distribution,
although it was of finite duration in the signal.

the Wigner distribution is
1 2
W(t, w) = — e o0 " Bt-oola, (5.16)
K

The first thing we should note is that the Wigner distri-
bution is positive, and this is the only signal for which it is
positive [93], {157], [180]. If « is small, then the distribution
is concentrated along the line w = wy + Bt, which is the
derivative of the phase and corresponds to the local mean
frequency. In the extreme case where we have a chirp (i.e.,
a = 0) the distribution becomes®

Wit w) = 8w — Bt — w) whena =0 (5.17)

which shows that the energy is totally concentrated along
the instantaneous frequency. If we further take 8 = 0, then
the distribution is peaked only at the carrier frequency,

W(t, w) = d(w — wy) a, B =0. (5.18)

In Fig. 7 we plot the Wigner distribution to illustrate how
it behaves as the Gaussian becomes more chirplike.

The correlation coefficient for this case gives a revealing
answer. We find that

(tw) =£-
(o4

2
1 o + p?
= |— = [—. .19
a; ‘Za' 9, ,' 2a (5.19)

The covariance is therefore

(t) =0,

(w) = wy,

Cov (tw) = £ (5.20)
2a

When g — 0, the covariance goes to zero, which implies that
we have no correlation between time and frequency. That
is reasonable because we have a pure sine wave for all time.
As a = 0, the covariance goes to infinity and we have total
correlation, which is also reasonable since a chirp forces
total dependence between time and frequency. Similar
considerations apply to the correlation coefficient as

*0One must be careful in taking the limit because the signal can
no longer be normalized. The normalizing factor is omitted when
calculating Eq. (5.17).
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Fig. 7. Wigner distribution for Gaussian signal s(t) = Ae "2+ 1862 +iwt Ag o — 0, making
the signal more chirplike, the Wigner distribution becomes concentrated around the
instantaneous frequency o = wp + Bt. 8 = 0.3, wo =3. (@ a = 1. (b = 0.5. (c) &« = 0.1.

Time and frequency variables are plotted from —5 to 5 units.

defined by Eq. (4.23),

1
= —. (5.21)
V1 + (/B
The correlation coefficient goes to 1 as a — 0, which indi-
cates perfect correlation, and it goes to zero as o — o0, which
implies no correlation.
Example 2: We take

s(t) = Aeft + Ajel, (5.22)
The Wigner distribution is
WU, @) = A28(w — w)) + A2Bw — w) + 24,4,

+ Olw — %(w1 + wy)] cos (wy; — wylt. (5.23)

Besides the concentration at w; and w, as expected, we also
have non zero values at the frequency 3(w; + w,). This is an
illustration of the cross-term effect discussed previously.
The point w = Hw;, + wy) is the only point for which there
is an overlap since the signal is sharp at both w; and w,. This
distribution is illustrated in Fig. 3(a). For the sum of sine
waves, we will always have a spurious value of the distri-
bution at the midway point between any two frequencies.
Hence for N sine waves we will have %N(N — 1) spurious
values. We note that the spurious terms oscillate and can
be removed to some extent by smoothing.

Example 3: For the finite-duration signal

sy =e“, 0=st=<T (5.24)

the Wigner distribution is

1A
A

NI~

t
W(t, w) = — sinc (w — wy)t, 0
T

T
—<t<T. (525

Y sinctw — w)(T — 0, :

This is plotted in Fig. 2(a). As discussed, the Wigner dis-

tribution goes to zero at the end point of a finite-duration

signal. Also, note the symmetry about the middle time,

which is notthe case with the Page distribution. The Wigner

distribution treats past and present on an equal footing.
Example 4: For the sum of two Gaussians

1/4
oy —a1t212 + Bt
S(t) = A1 <___> e at?f2 4+ jBt2 + junt
K3

14
+ A <ﬂ> @2+ B2+ juat (5.26)
w
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a straightforward calculation gives

A% —ait? = (@ = Bt —anPlen A% —t? - (0 — B2t — w2Ple2
Wit, w) = —e +—e
K

—(y2 + )2 + flwz — wi)t

+ A Ajaa)V* 42 Re e
1% Y2+ 7
Ly, — ¥t + jlo — 1wy + @I}’
- exp 36 ~ m : (5.27)
32 + 1)
where
Yi=01 + B, 2= — jBa (5.28)

Fig. 4(a) illustrates such a case. The middle hump is again
due to the cross-term effect.

E. Discrete Wigner Distribution

A significant advance in the use of the Wigner distri-
bution was its formulation for discrete signals. A number
of difficulties arise, but much progress has been made
recently. A fundamental result was obtained by Claasen and
Mecklenbrauker [53], [54], where they applied the sampling
theorem to the Wigner distribution. They showed that the
Wigner distribution for a band-limited signal is determined
from the samples by

Wit, w) = T ) 2 s*t — ke ¥ st + kT)  (5.29)
T k=-o

where 1/T is the sampling frequency and must be chosen
50 that T < /2w, Where wn,, is the highest frequency in
the signal. The sampling frequency must be chosen so that

w5 = 40maxe (5.30)

For a discrete-time signal s(n), with T equal to 1, this
becomes

W(n, 6) = %k; s*n — ke ¥ s(n + k).  (5.31)

In the discrete case as given by Eq. (5.29) the distribution
is periodic in w, with a period of = rather than 27, as in the
continuous case. Hence the highest sampling frequency
that must be used is twice the Nyquist rate. Chan [48]
devised an alternative definition, which is periodic in 7.
Boashash and Black [25] have also given a discrete version
of the Wigner distribution and argued that the use of the
analytic signal eliminates the aliasing problem. They devised
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a real-time method of calculating the Wigner distribution
and the analytic signal. Choi and Williams [51] devised a
discrete version of the exponential distribution. An alter-
native approach has been used by Boudreaux-Bartels and
Parks[38],[41], who approximated the Fourier integral using
spline approximations.

A new and unified approach to the discrete Wigner dis-
tribution has recently been given by Peyrin and Prost [155],
which naturally reduces to and preserves the properties of
the continuous case. Starting with the relation for the sam-
pled signal $(t) in terms of the continuous signal s(t),

§(t) = 2 s(nT)d(t — nT) (5.32)

they substitute into the continuous Wigner distribution and
obtain the discrete version for the time variable

Wn, w) = % s*((n — 2K)T)s(kT)e /#@k=mT (5 33)

Equation (5.33) retains the frequency as a continuous vari-
able. The identical procedure can be used to derive the case
when frequency is discrete and time is continuous. They
also generalize to the case where both time and frequency
are discrete. Their approach is general and can undoubt-
edly be applied to other distributions.

Amin [9] has given explicit recursion relations for the cal-
culation of the discrete Wigner distribution and discrete
smoothed Wigner distribution.

F. Smoothed Distributions

The major motivations for smoothing the Wigner distri-
bution are that for certain types of smoothing, a positive
distribution is obtained [34], [47], [66], and that many of the
so-called artifacts illustrated before are suppressed. The
fundamental idea is to smooth the Wigner distribution by
the double convolution

Wsl(t, w) = S Lt —t,w— YW, &)Y dt' do’ (5.34)

where L is a smoothing function. Itis hoped thata judicious
choice of L will result in a new distribution with desirable
properties. We stress that if L is taken to be independent
of the signal, then the only way to obtain a positive distri-
bution is by sacrificing the marginals. The most common
smoothing function used is a Gaussian,

Lty @) = —= g~ Clamei3 (5.35)
a3

and it has been known for a long time in the quantum lit-

erature [34], [47], [66], [118]-[120], [142], [181] that for certain

values of « and B, a positive distribution is obtained. The

condition is that [47], (66]

o = 1. (5.36)

More general smoothing functions have been considered
in Bertrand et al. [23], where they showed that a sufficient
condition for positivity is that the smoothing function be
aWigner distribution of any normalized signal. Janssen [100]
and Janssen and Claasen [101] considered smoothing of the
general class of distributions, Eq. (4.1), with a Gaussian. In
Section VIwe discuss the spectrogram which can be viewed
as a smoothing procedure.
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Soto and Claverie [179] have given a concise summary of
the effects of smoothing with a Gaussian for quantum
mechanical distributions, and their results can readily be
transcribed into signal analysis language. The global expec-
tation values of frequency and time are the same for the
Wigner and the smoothed Wigner distributions. That s not
the case for the second global moments where we have
(w5 = (P + 1o and similarly for (t2). The higher
moments are also changed, which is a reflection that the
marginals are not preserved. Soto and Claverie show that
smoothing very often gives erroneous answers in the quan-
tum mechanical case.

Garudadri et al. [81] have made important contributions
in understanding the effects and limitations of smoothing.
They show that smoothing causes loss of phase informa-
tion. However, they show that partial smoothing can be of
advantage.

Amin [8] has obtained conditions for the selection of time
and lag window for smoothing the Wigner distribution and
showed the relation with the autocorrelation function.

The recent work of Andrieux et al. [10] has made signif-
icant strides toward utilizing smoothing effectively. They
consider optimal smoothing of the Wigner distribution to
be that which preserves as much as possible of the basic
characteristics of the Wigner distribution. They argue that
the smoothing should involve regions of the time-fre-
quency planewhich are as small as possible and yet still lead
to a positive distribution. They obtain general conditions
for this minimum smoothing in terms of the rate of change
of the phase for special signals of the form s(f) = e,

Nuttall [146], [147] has considered smoothing with amore
general Gaussian form,

L(t, w) = 2/Qe 1=~ «HB-2cut (5.37a)
with
1 2
Q= ik (5.37b)

and has shown that the resulting distribution will be pos-
itive if Q < 1, that is, if

(5.38)

He points out that this smoothing function need not be a
Wigner distribution function of some signal, unless Q = 1.
He has derived a number of interesting alternative expres-
sions for the smoothed Wigner distribution and showed
how smoothing can be optimized in advantageous ways.

Choi and Williams [51], Nuttall {146}, [147], and Flandrin
[76] have found the ambiguity function plane to be a very
effective way of finding kernels.

Although we have discussed smoothing in the section on
the Wigner distribution, this is really a distribution-inde-
pendent process in the sense that smoothing a distribution
with one smoothing function is equivalent to smoothing
another distribution with a different smoothing function.
The end result is the same and is a member of the bilinear
class. In particular if P; is smoothed with the smoothing
function L4(t’, w’; t, w) to obtain P,

Pt w) = SS Pyt o )4(t', s t, @) dt’ dw’  (5.393)
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the same smoothed distribution can be obtained from dis-
tribution P, with smoothing function Ly(t’, w’; t, w),

Pt w) = Plt, ) = SS Py(t!, ) Ly{t', o’; ¢, w) dt’ do’

(5.39b)
if the smoothing functions are related by
Lyt", 0" t, ) = SS gt” — t', 0" — o)
Ly, o' t, W) dt’ do’ (5.39¢)

where g(t, w) is defined by Eq. (4.65).

G. Other Properties and Results

Positivity: We have seen that the Wigner distribution is
manifestly positive for the Gaussian signal, Eq. (5.15). In fact
that is the only signal for which the Wigner distribution is
positive, as was shown by Hudson [93]and Piquet[157]. Soto
and Claverie [180] have proved it for the multidimensional
case.

Modulation and Convolution: Consider the Wigner dis-
tribution of the product of two signals,

s = 1D sy{0). (5.40)

To write it in terms of the Wigner distribution of the indi-
vidual signals, substitute the signal into Eq. (5.1) and use the
inverse relations of Eq. (5.5) to obtain [54]

Wit, w) = S Wi(t, o) W(t, w — o) dw’. (5.41)
For the case of convolution where

s(t) = S s{{t)sy(t — t)Ydt”  or  S(w) = Si{w)SHw)
(5.42)
we immediately get (by symmetry) that
Wit, ») = g Wi(t', o) Wy(t' — t, w) dt'. (5.43)

Moyal Formula: An interesting relation exists between the
overlap of two signals and the overlap of their Wigner dis-
tributions,

2
= 2x SS Wilt, ) Wolt, w) dt dw.  (5.44)

S s4(tys3(t) dt

This was first shown by Moyal [143]. Janssen [98] showed
that there are an infinite number of other distributions with
this property. The requirement is that the kernel satisfy |$(6,
7]? = 1. In the case where this is not so we have

2
S st st dt' =27 SSSS Pi(t, 0} P3(t’, w')
Kt - t, w — o) dt do dt’ dw’
(5.45)

where

1 ej01+/m
K, =—gg———d0d. 5.46
= 1) Tel, op @ 549

Some have made Moyal’s formula a requirement of dis-
tribution, but it is not clear why that should be so. As Jans-
sen [98] pointed out, it has a certain appeal in quantum
mechanics but is “‘perhaps not really necessary for signal
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analysis.” In factitis not really used in quantum mechanics
either. Of course, the inner product is a fundamental quan-
tity in signal analysis and quantum mechanics, and what
one needs isawayto relate it to the respective distributions.
Equation (5.45) does so and there is no particular reason
why the relation has to be of the form given by Eq. (5.44).
We note that Moyal’s formula has been found to be useful
in detection problems (78], [117], (31].

Performance in Noise: The behavior of the estimate of the
Wigner distribution for a deterministic signal in zero mean
additive stationary noise has been analyzed by Nuttall [146].
He obtains explicit expressions for the mean Wigner dis-
tribution (ensemble average over all possible realizations
of the noise) and its variance. Since it is assumed that the
noise is additive, the signal and noise process is

x(t) = s(®) + n(). (5.47)

As the noise term is stationary and does not decay to zero
at infinity, x(t) is weighted by a known deterministic func-
tion v(t), which may be chosen advantageously depending
on the circumstances. The weighted process is

y(t) = v(ihx(t) = v(t)[st) + n(t)]. (5.48)

The Wigner distribution can therefore be written as the
convolution, with respect to frequency, of the distribution
of v(t) with the distribution of s(t) + n(t), as per Eq. (5.41).
The Wigner distribution of s(t) + n(t) consists of four terms,
namely, thedistribution of the signal, the distribution of the
noise, and the two cross terms which are linear in the noise.
The linear noise terms ensemble average to zero because
we are dealing with zero mean noise. Therefore the mean
Wigner distribution is

Wyit, o) = S WL, Wilt, 0 — ) + Wylt, 0 = @] do’
(5.49)

where overbars denote an ensemble average over all pos-
sible realizations of the noise.

The mean Wigner distribution of the noise can be sim-
plified for stationary noise. Namely, the noise covariance
C(t) is a function of the difference of the times,

Cit’ — t) = n()n*(t) (5.50)
and hence
— 1 1 1 : .
— ) = — * R _ —jr{w — @)
Wit 0 — ) 215" (t 27’>n<t+21>e dr
(5.51)

1 ) §
= o S C(He 7w dr

T
= Gl — ) (5.52)

where G(w) is the power density spectrum. The mean Wig-
ner distribution of y(t) is therefore

Wit, ) = S W (t, W, 0 — @) + Glo — ©)] du’.
(5.53)

With the further assumption that n(t) is a Gaussian with
n(n(t) = 0, Nuttall [146] obtains an explicit expression for
the variance of W,. He shows that for any noise spectrum,
the variance will be infinite if the signal is not weighted, that
is, if v(t) = 1 for all time. Moreover, he shows that for the
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case of white noise (power density constant for all fre-
quencies) the variance is infinite for any weighting func-
tion. To have finite variance, the frequencies outside the
band of the signal must be filtered out.

Other Derivations and Properties: The Wigner distribu-
tion can be derived by different methods. A particularly
interesting one using the Radon transform was given by
Bertrand and Bertrand [22], who also studied the behavior
of these distributions for broad-band signals. Kobayashiand
Suzuki [110] have shown that for mono-component signals
the Wigner distribution may give rise to side lobes.

General reviews of the Wigner distribution have been
given by Hillery et al. [89], Mecklenbrauker {141}, Boashash
[26], [29], and Boudreaux-Bartels [41].

VI. SPECTROGRAM AND AMBIGUITY FUNCTION
A. Short-Time Fourier Spectrum and Spectrogram

The spectrogram [5], [6], [68], [75], [111], [112], [126], [150],
[151], [158], [163], [164], [174] has been the most widely used
tool for the analysis of time-varying spectra. The concept
behind it is simple and powerful. If we want to analyze what
is happening at a particular time, then we just use a small
portion of the signal centered around that time, calculate
its energy spectrum, and do it for each instant of time. Spe-
cifically, for a window function h(t) centered at t, we cal-
culate the spectrum of s(t)h(t’ — 0,

Siw) = \/% S e Ms(tVht' — b dt’ (6.1)
™

which is the short-time Fourier transform. The energy den-
sity spectrum or spectrogram is

Pyt, o) = |Sfw)|? 6.2)

which can be considered as the energy density at points t
and w. The window function controls the relative weight
imposed on different parts of the signal. By choosing a win-
dow that weighs the interval near the observation point a
greater amount than other points, the spectrogram can be
used to estimate local quantities. Depending on the appli-
cation and field, different forms of display have been used.
The most common display is a two-dimensional projection
where the intensity is represented by different shades of
gray. This is possible for the spectrogram, because itis man-
ifestly positive. The earliest application was used to dis-
cover the fundamental aspects of speech. The mathemat-
ical description of the spectrogram is closely connected to
the work of Fano [72] and Schroeder and Atal [175], although
their approach was from the correlation point of view. There
have been many modifications [111], [112] of the spectro-
gram, and an excellent comparison of the different
approaches is presented by Kodera, Gendrin, and De-
Villedary [112]. Altes [6] has given a comprehensive analysis
of the spectrogram and derived a number of interesting
relations pertinent to the issues we are addressing in this
review.

Another perspective is gained if we express the short-time
Fourier transform in terms of the Fourier transforms of the
signal S(w) and window H(w),

1 . .
Sew) = E e S e S(w)Hw — v’ dw’ 6.3)
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which by analogy with the preceding discussion can be used
to study the behavior of the properties around the fre-
quency point w. This is done by choosing a time window
function whose transform is weighted relatively higher at
the frequency w.

The more compact or peaked we make the window in the
time domain, the more time resolution is achieved. Simi-
larly, if we choose a window peaked in the frequency
domain, high-frequency resolution is obtained. Because of
the uncertainty principle, both h(t) and H(w) cannot be made
arbitrarily narrow; hence there is an inherent tradeoff
between time and frequency resolutions in the spectro-
gram for a particular window. However, different windows
can be used for estimating different properties.

The basic properties [68], [126], [111], [112] and effective-
ness of the spectrogram for a particular signal depend on
the functional form of the window, although we expect that
the estimated properties are not too sensitive to the details
of the window. Indeed one would hope that the results are
in some sense window independent. As an illustration con-
sider calculating the first conditional moment of frequency
by using Eq. (4.24) in order to estimate the instantaneous
frequency. If we write the signal in terms of its amplitude
and phase as in Eq. (4.26), and similarly for the window

h(ty = Aty el (6.4)

then the first conditional moment is calculated to be
1 2epn A2(pr s s ipr ,
(W) = —= | AAAR — Ble'(t) + opt’ = Dl dt” (6.5
P1(t)
where Py(t) is the marginal distribution in time,

Py(t) = S |Sdw)}? dw = S AAVAL( — B dt’.  (6.6)

This may be derived directly or by using Eq. (4.25), with the
kernel of the spectrogram to be given by Eq. (6.17). If dif-
ferent windows are used, different results are obtained for
(w),. If thewindow is narrowed in such away as to approach
a delta function [123], A}(t) = &(t), then P() = A%D). Using
Eq. (6.5) for real windows, the estimated instantaneous fre-
quency approaches the derivative of the phase

(W) = @0, 6.7)

We note, however, that although the average approaches
the derivative of the phase, its standard deviation
approaches infinity [123]. This is due to the fact that as
Af,(t) — &(t), the modified signal s(t}h(t’ — t) is very narrow
as a function of t" and hence has a large spread in the fre-
quency domain.

The energy concentration of the spectrogram in the time-
frequency plane is illustrated effectively by the following
example [112], where we have been able to put the final
result in a revealing analytic form. For the signal we take
an amplitude-modulated linear FM as given by Eq. (5.15) (we
take wy = 0 for convenience) and choose the window to be

14
h(t) = <§> e—aﬂ/2+,‘bt2lzl 6.8)

Ly

The short-time Fourier transform can be calculated ana-
lytically and, after some algebra, the energy density spec-
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trum can be written in either of two forms,

Py(t
Py(t, w) = 21;37 e—[u—<u>,12/2a§ 6.9)
ViTo;
Palw) i iyapiaet
= e ulffeey (6.10)
\/271'017

where P;(t) and Py(w) are the marginal distributions of time
and frequency, respectively,

aon
P. = 2%  -lao/ata)e? 6.11
"0 (o + a) € 6.11)
aa/m
= — {aa/[a(a? + b2) + a(e? + B} u?
Fale) ‘\}a(az T D) T aal + 8¢
6.12)
and where
af — ba
(W), = o« a t (6.13)
aB — bua
= 6.14
e a@+b) +al + /) "” 6.14)
1 1(8 + by
2 _ 2 1
o3 2(a+a)+2——a+a (6.15)

(@ + a* + (B + b
a@® + bA) + ale® + 63’

1
o =3

(6.16)

From Egs. (6.9) and (6.10) we see that for a given time, the
maximum concentration is along the estimated instanta-
neous frequency and that for a given frequency, the con-
centration is along the estimated time delay. If we want high
time resolution, which will give a good estimate of the
instantaneous frequency, we must take a narrow window
which is accomplished by making a large. From £q. (6.5) we
see that then (w), = Bt, as expected from our previous dis-
cussion.

Properties of the Spectrogram and Kernel: As previously
mentioned, the spectrogram is a member of the class given
by Eq. (2.4). Expanding Eq. (6.2) and comparing with Eq. (2.4),
we see that the kernel that produces the spectrogram is [56]

@0, 1) = g h*<t - %r)h <z + % T> e ™dt  (6.17)

which is related to the symmetrical ambiguity function (see
next section) of the window. It can also be expressed in
terms of the Fourier transform of the window,

o8, 1) = S H*(m - %0> H<w + % 9>e”‘” dw. (6.18)

Equation (6.17) is a very convenient way to study and
derive the properties of the spectrogram. For example, to
see whether energy can be preserved, we examine the ker-
nel at 8, r = 0, as per Eq. (4.14),

(0, 0) = S {h(®)|? dt. 6.19)

This should be equal to 1 if we want the total energy to be
preserved, and that can be achieved if the window is nor-
malized to 1. To examine whether the marginals are sat-
isfied we examine the conditions given by Eqs. (4.10) and
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(4.12),
¢s(8, 0) = S |h(t)|2e~" dt (6.20)

50, 7) = S [H(w)|?e’™ dw. 6.21)

To have the correct marginals, both of these quantities
should be equal to 1. The only way we can make ¢,(f, 0) equal
to 1is if we choose a window whose square approaches a
delta function. The closer it approaches a delta function,
the closer the time marginal of the spectrogram will
approach the instantaneous energy. However, for a narrow
window, the Fourier transform will be very broad and the
spectral energy density will be represented poorly.

We have already given the first conditional moment of
frequency for a given time, Eq. (6.5), and showed its rela-
tionship to the instantaneous frequency. A similar result
holds for the time delay. If the Fourier transforms of the
signal and the window are written as

S(w) = Bw)e*®,  H(w) = Bylw) e (6.22)

the conditional expected value of time for a given fre-
quency is

(ty, = — S B w)BY(w — w)¥'(@) — Yhw — )] do’
Pafw)
(6.23)
where Py(w) is the marginal distribution in time,
Pylw) = S Biw)Biw — ') dw’. (6.24)

If the window is narrowed in the frequency domain, then
asimilar argumentas before shows that the estimated group
delay goes as (t), = —y'(w) for real windows that are nar-
row in the frequency domain.

One can perform a further integration of the conditional
moments to get the mean time and mean frequency of the
signal. They are given by

(s = (O] = (s (6.25)
(@5 = Cwd| +<wd|p = (@' + Copt)d]n  (6.26)

where the subscript S signifies that we are using the spec-
trogram for the calculation and the subscripts s and h indi-
cate calculation with the signal or window only, that is, with
A%(D) or with A%(t). The mean value of the window has a very
determined effect on these global quantities. If the window
is chosen so thatits mean time and frequency are zero(e.g.,
by choosing a window symmetrical in time and frequency),
then the average of the spectrogram will be identical to that
of the window, irrespective of its shape. However, the sec-
ond global momentand the standard deviation will depend
on the window characteristics.

Similar considerations apply to the covariance. The first
joint moment is

(twdls = Lo (O ]s — tohOh — <O ]a<e ()]s
+ (O |n (6.27)

and using Egs. (6.25) and (6.26) we see that the covariance
can be written in the form

Cov (tw)|s = Cov (tw)|s — Cov (tw)|p. (6.28)
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This shows that the covariance of the energy density spec-
trum is the difference between the covariance of the signal
and that of the window.

Inversion and Representability: The inversion problem for
the spectrogram poses no new difficulties and the discus-
sion of Section IV regarding inversion applies. To deter-
mine whether a particular window function leads to a spec-
trogram from which a signal can be recovered, one
calculates the kernel by way of Eq. (6.17) and applies the
general criteria of Nuttall {148] as discussed in Section IV-B.

Comparison with Bilinear Distributions Satisfying the
Marginals: The spectrogram has a simple intuitive inter-
pretation and by choosing appropriate windows, the phys-
ical parameters of the signals can be measured or esti-
mated. However, one must manipulate the window
depending on the quantities being estimated. For example,
if one wants to obtain accurate results for both the instan-
taneous frequency and the time delay, different windows
must be used. Also the optimum window to use will in gen-
eral depend on time [14], [183]. On the other hand, as we
have seen, for some of the bilinear distributions, the instan-
taneous frequency and time delay are obtained exactly by
calculating the conditional averages, and no decisions with
respect to the windows have to be made. This is an impor-
tant advantage afforded by distributions like the Wigner,
which has been used with considerable profit to estimate
the instantaneous frequency of asignal. However, the spec-
trogram has the advantage that it is always positive. The bi-
linear distributions which give the proper marginals are
never positive for an arbitrary signal. Also, the results they
give for other conditional moments can very often not be
interpreted [56]. The relative merits and the usefulness of
these distributions are developing subjects and as we gain
experience with a variety of distributions, their advantages
and drawbacks will be clarified. Itis very likely that different
distributions should be used for different signals and for
obtaining different properties of a signal.

For comparison we list in Table 3 some of the important
properties of the spectrogram and compare them to the
bilinear distributions which satisfy the marginals and sat-
isfy Eqs. (4.28) and (4.47b).

type discussed in Section | evolved separately and were
motivated by differentapproaches and physical arguments.
Only recently has the connection between them been
appreciated. In the quantum context Bopp [34] and Kurysh-
kin et al. [118]-[120] developed the theory of spectrograms
as an alternative approach to the Wigner distribution. Per-
haps the earliest connection between the spectrogram and
other distributions, pointed out by Ackroyd [2], [3] and later
used by Altes [6], is the relation with the Rihaczek distri-
bution,

Ps(t, w) = SS eslt’, wep(t’ — t, v —w) dt’ dw’  (6.29)

where e(t, w) and e,(t, w) are the Rihaczek distributions of
the signal and window functions, respectively. The spec-
trogram can be thought of as the time-frequency distri-
bution of the signal smoothed with the time-frequency dis-
tribution of the window. Mark [138] and Claasen and
Mecklenbrauker [56] pointed out a similar relation with the
Wigner distribution,

Py(t, w) = SS W, )Wt — t, 0 — o) dt’ do’.  (6.30)

Many researchers working with the Wigner distribution,
who have been unaware of Eq. (6.29), have implied that this
shows some unique and important connnection between
the spectrogram and the Wigner distribution. We now know
that these relations are just special cases of the general rela-
tion which connects any two different bilinear distribu-
tions.

In fact these two special cases can be generalized for other
distributions,

Ps(t, w) = SS P, @)Pt' — t, 0 — @) dt' dw’  (6.31)

for all kernels such that ¢(—#8, 7)¢(8, 7} = 1, where P, and P,
are the distribution functions of the signal and the window,
respectively. To show this, suppose M, and M,, are the char-
acteristic functions of the signal and the window. Using Eq.
(3.77) we have that

Relation to Other Distributions: Historically the devel- 656, 7) = Mp(-6, 7) 632)
opment of the spectrogram and bilinear distributions of the s &(—0,7) '
Table 3 Comparison of Spectrogram with Distributions Satisfying Marginals and Egs.
(4.28) and (4.47b)*
Property Spectrogram “Distribution”’
Total energy 1 1
Time marginal Py(t) SAZ(” ANt — B dt’ A1)
Frequency marginal Py(w) S Bw)) Blw ~ o) do’ Bw)
Mean time ()]s = {]n (B
Mean frequency (s + {w)ln (W)
1
Mean time for given w @ S BYw) Bilw — o) [¥'(w) — Yilw — )] do’ )
2
1
Mean frequency for given t 0 g AXE) AR — O [@'(1) + @it — O] dt’ @'()
1

*The signal and window are written as A(t) e " and A,(f) e ", respectively, and both are normalized to 1. Their Fourier trans-
forms are expressed as B(w) e ¥ and B (w) e *", respectively. The sybmols |, and |, indicate that the calculation is done

with the signal or the window only.
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The characteristic function of the spectrogram is

M0, 7)

I

Sg |Sw)|2e ™ dt duw

M6, YMy(—6, 7)
= ' 6.33
66, 1o(=6, 7 (633
If we take the Fourier transform of both sides according to
Eqg. (3.30) to obtain the distribution, then Eq. (6.31) follows.
If p(—8, 7)¢(8, t) does not equal 1, then

Ps(t, ) = SSSS G(t”, o) P(t’, w")
CPE A —t, —w” + w — @) dt dt” do’ dw”
(6.34)

where

e—jﬁt~;m

1
Git, w) = s gg m dé dr. (6.35)

B. Ambiguity Function

The Woodward {202] ambiguity function has been an
important tool in analyzing and constructing signals asso-
ciated with radar. It relates range and velocity resolution,
and the performance characteristics of a waveform can be
formulated in terms of it. By constructing signals having a
particular ambiguity function, desired performance char-
acteristics are achieved, at least in theory. A comprehensive
discussion of the ambiguity function can be found in [168],
and shorter reviews of its properties and applications are
found in [67] and [177].

The connection between the ambiguity function and
time-frequency distribution functions as discussed here
has been recognized for a long time [108], [109]. Indeed
Woodward [202] noted the connection with the Ville char-
acteristic function. The similarities between the ambiguity
function and pseudo-characteristic functions as discussed
in Section Il are many. Having a connection between the
two often helps to clarify relations.

There are a number of minor differences in terminology
regarding the ambiguity function. We shall use the defi-
nition of [168],

x@6, 7 = S s*(t — 7)s(t)e™ dt. (6.36)

The symmetrical ambiguity function is defined [168] by

xs@, ) = S s*<t - %r) e""s<t + % 'r> dt. (6.37)

We note that very often the complex conjugate of (6.36) or
its absolute value, or the absolute value squared, are called
the ambiguity function.

Comparing with Eq. (3.19) it is seen that the ambiguity
function is the characteristic function of the Rihaczek dis-
tribution, and comparing with Eq. (3.40) we see that the sym-
metrical ambiguity function is the characteristic function
of the Wigner distribution. The mathematical and possible
physical analogy between the two enhances the interpre-
tation of the properties of the ambiguity function. For exam-
ple, the condition that x(0, 0) = 1is easily understood from
acharacteristic function point of view since it is a reflection
of the fact that the distribution is normalized to the total
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energy, which has been chosen to be 1. The relation that
x6, 1) = x*(—8, —7) implies that the distribution is real. If
we look at the column labeled characteristic function in
Table 2, we recognize that those are properties usually asso-
ciated with the ambiguity function, and that in many cases
the interpretation in terms of distributions is more trans-
parent. The analogy can be extended by defining a gen-
eralized ambiguity function through Eq. (3.77). Choi and
Williams [51] have used them with profit to analyze the
effects of the kernel on the behavior of the distribution.
There are many more analogies than we have indicated here.
A number of excellent articles exploring the relationship
between the ambiguity function and time-frequency dis-
tributions can be found in [56], [69], [187].

Some have argued that a particular distribution, such as
the Wigner, is “‘better’”” than the ambiguity function. Anum-
ber of reasons are usually given, among them that the Wig-
ner distribution is real while the ambiguity function is com-
plex. This is a mistaken view for the following reasons.
Characteristic functions are very often much more reveal-
ing than the distribution. Furthermore they are very useful
in calculation as, for example, to calculate the mixed
moments. The properties of a distribution are often easier
to determine from the characteristic function than from the
manipulation of the distribution. Also, the ambiguity func-
tion plane is a very effective means for choosing kernels
[51], [146], [147], [76]. Finally we point out that the charac-
teristic function has been a main tool for obtaining these
distributions.

VII. TiME-FREQUENCY FILTERING AND SYNTHESIS

If the concepts and methods of filter theory could be gen-
eralized to the time-frequency plane, it would offer a pow-
erful tool for the construction of signals with desirable time-
frequency properties. However, time-frequency filtering
presents unique difficulties which have not been fully over-
come. Perhaps the first attempt to obtain input-output rela-
tions for ajoint quasi-distribution was by Liu [127], who used
the Page distribution. He calculated the output relations for
anumber of causal linear systems and obtained interesting
bounds on the outputdistribution. Subsequently Bastiaans
[17], [18] and Claasen and Mecklenbrauker [56] have
obtained the transformation properties for the Wigner dis-
tribution. Eichmann and Dong [70] formulated a general
optical method for time-frequency filtering and produced
methods that may be applied to many distributions.

As Saleh and Subotic[173] have pointed out, unlike a stan-
dard transfer function, the output for these bilinear dis-
tributions is not a simple multiplicative function of the input
distribution. As a matter of fact, the output distribution will
almost always not be representable, that is, no signal will
exist that will produce it. There are two qualitatively dif-
ferent reasons why distributions are not representable.
They can be categorized into distribution-independent and
distribution-dependent reasons. For the sake of simplicity
we restrict ourselves to distributions that satisfy the mar-
ginals.

1) Distribution-Independent Conditions: From a poten-
tial candidate for a distribution P(t, ), one can calculate the
two marginals

Pty = S P(t, w) dw,  Pyw) = S Pt, w) dt.  (7.1)
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Now for the distribution to be representable, P;and P, must
be the absolute squares of functions that are Fourier trans-
form pairs of each other, that is, there must exist a signal
s(t) whose Fourier transform is S(w), such that Py(t) = |s(t)|2
and Py(w) = |S(w)|>. An example of nonrepresentability, as
pointed out by Saleh and Subotic [173], would be a distri-
bution that produced marginals which are nonzero only in
finite regions. Such marginals could not produce Fourier
pairs since they are time and band limited.

2) Distribution-Dependent Conditions: The above re-
quirements are clear and within the experience of working
with Fourier transforms. The second set of reasons depend
onthe functional relationship between the distribution and
the signal, and reflect the peculiarities of the distribution.
Thus the design of time-variant transfer functions cannot
be based solely on physical grounds but must take into
account the peculiarities of the distribution, and unfor-
tunately each distribution has its own peculiarities. To illus-
trate these difficulties, we give some examples. Suppose
that for an input Wigner distribution function the transfer
function cuts a strip parallel to the frequency axis for afinite
time interval, indicating silence at all frequencies. The
resulting distribution is never representable, although what
we have done to it, namely, asked for some silence, is cer-
tainly reasonable. Is the nonrepresentability an indication
of some violation of physical impossibility? No, it is merely
a peculiarity of the Wigner distribution. For a more dra-
matic example, suppose we have the Wigner distribution
for a Gaussian signal. If we multiply the distribution by «?,
dowe getarepresentable distribution? No. In fact if we mul-
tiply it by any positive function other than a Gaussian, we
can be certain that the resulting distribution is not proper.
The reason is that the Gaussian signal is the only one that
gives a positive Wigner distribution, and multiplying the
distribution with another positive function which is not
Gaussian cannot result in any Wigner distribution. Now if
we use the Rihaczek distribution for the silence example,
the resulting distribution is a proper Rihaczek distribution.
However, if we multiply a Rihaczek distribution by a func-
tion of time and frequency which is not a product of func-
tions of time and frequency, the output will never be a
Rihaczek distribution. Again, this is a peculiarity of the dis-
tribution and not a reflection of some inherent physical
impossibility. Hence procedures that appear reasonable, as
reflected by reasonable time-variant transfer functions,
often do notwork for a particular distribution, but may work
for another. The failure is not due to any violation of phys-
ical law, but just a reflection of the peculiarities of the dis-
tribution. How to recognize and deal with these peculiar-
ities is one of the major stumbling blocks. The above
difficulties have been investigated for only a few distri-
butions, and it is possible that there may be distributions
for which the difficulties do not arise.

These problems not withstanding, Saleh and Subotic[173]
simplified matters considerably. By analogy with the stan-
dard transfer function method they multiply the input dis-
tribution by a time-variant transfer function to obtain the
output. Conceptually this is an ideal method as it is simple
and direct. Specifically, they write

Polt, w) = H(t, w)P(t, w) (7.2)

where Py and P, are the output and input distributions,
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respectively, and H is the time-varying transfer function. In
general the output distribution will not be representable,
and they present two methods to synthesize the signal from
the output distribution. One technique is based on using
Eq. (5.6), irrespective of whether or not the signal is rep-
resentable, and the other finds a signal that reproduces a
distribution as closely as possible, in the least-square sense,
to the outputdistribution. The method of Saleh and Subotic
is appealing because it conforms as much as possible with
our current intuitive notions of what we would want time-
frequency filtering to do. As they point out, their approach
applies to other time-frequency distributions. It would be
of interest to investigate for which distributions their pro-
cedure can be implemented in an optimal manner.

Other innovative methods have been devised for the syn-
thesis problem. Boudreaux-Bartels and Parks [39]-{41] have
devised a number of efficient methods for the synthesis of
the Wigner distribution, and other methods have been
given by Yu and Chang [203], [204] and Boashash et al. [26].

Input-Output Relations: We now summarize the input-
output relations for a general time-variant linear transfor-
mation of the signal,

solt) = S h(t, t')s,(t") dt’ (7.3)

where h(t, t') is the impulse response {172], [205]. In such
a case the relation between the input distribution and the
output distribution can always be written as

Polt, w) = SS K(t, w; ', @) P, &) dt’ dw’. (7.4)

A straightforward calculation yields

K(t, w, t', )
_1 S oo i jolu =0 ="~ 1) 66, 7
8r’ e, )
1 1 1 1
a1 , 1, 1 L
h<u 21-,u 21>h<u+27,u 21>
- du d7 db du’ dr’ db’. (7.5)

This simplifies considerably when particular kernels are
considered. For the Rihaczek distribution we have

1 o
Kit, o, t', @) = — h(t, t)S*(w, w)e M*1te (7.6)
27
where
’ 1 » wt — jw't’ ,
Slw, w) = — |\ hit, e dt dt’. 7.7)
27

We note that K is a two-dimensional Rihaczek distribution.
For the Wigner distribution we have

1 ; . 1 1
Kf, ,t', ,:_SS v/rw+;7wh* . ('__ 4
(t, @ w’) by e <t 271‘ 2T>
-ht+1 t’-+-1’dd' (7.8)
27', 27’ 7 dTt .

which is a two-dimensional Wigner distribution [17], [18].
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Vi, OTtHER TOPICS: INSTANTANEOUS FREQUENCY,
QUANTUM MECHANICS, AND UNCERTAINTY PRINCIPLE

A. Instantaneous Frequency and Analytic Signal

The conceptof “instantaneous’’ frequency has along his-
tory in physics and astronomy. Historically the method-
ology and description of instantaneous frequency has not
always been associated with time-frequency distributions
or atime-varying spectrum. A comprehensive theory of joint
time-frequency distributions would be able to encompass
and clarify the concept of instantaneous frequency, so it is
important to appreciate the work that has been done along
these lines. Itwas Armstrong’s [11] discovery that frequency
modulation for radio transmission reduces noise signifi-
cantly, which produced a concerted effort to understand
and describe the mathematical and conceptual description
of frequency modulation and instantaneous frequency.
Early comprehensive works on the analysis of frequency
modulation were those of Carson and Fry [45] and Van der
Pol [192], who defined instantaneous frequency as the rate
of change of the phase of the signal. This definition implies
that we have some procedure for forming a complex signal
from a real one. In general there are an infinite number of
complex signals whose real part is a given real signal. A
major step was made by Gabor [80], who from the obser-
vation that both sin wt and cos wt transform into an expo-
nential €' if we use only their positive spectrum, gener-
alized to the arbitrary case with the prescription to
“suppress the amplitudes belonging to negative frequen-
cies and multiply the amplitudes of positive frequency by
2.”He noted that this procedure is equivalent to adding to
the signal an imaginary part, which is the Hilbert transform
of the signal. The positive frequencies are multiplied by 2
to preserve the total energy of the original signal. To see
how the Hilbert transform arises from the above prescrip-
tion, suppose the signal is s(t) and its Fourier transform is
S(w). The signal z(ty whose spectrum is composed of the pos-
itive frequencies of S(w) is given by the inverse transform
of S(w) using only the positive frequencies,

1 )
z(t) = 2 \/T—r L S(w)e™ dw. 8.1)
Expressing S(w) in terms of the signal s(t) as per Eq. (1.3),

1 (" .
z(ty = 2 — S g st)e # et dt’ dw 8.2)
27 Jo

and using the fact that
S e do = wbix) + L 8.3)
0 X

we have

s(t)

. (8.4)

20 = s + L S
T

The second part of Eq. (8.4) is the Hilbert transform of the
signal, and z(t) is called the analytic signal. The derivative
of the phase of the analytic signal conforms to our expec-
tations of instantaneous frequency for a wide variety of
cases, particularly narrow-band signals. There has been
considerable controversy over whether this represents the
proper mathematical expression of instantaneous fre-
quency, and a number of other definitions have been given
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[85], [178]. For example, one can define it in terms of the
average number of zeros that a function crosses per unit
time.

For a real signal of the form A(t) cos [wet + ¢(f)] the com-
plex signal is often taken to be A(f)e™ */#® which is called
the quadrature, or exponential, model. The conditions
under which this complex signal is a good approximation
to the analytic signal have been investigated [169). Nuttall
[145] resolved the issue by defining the error between the
exponential and the analytic signal to be the energy of the
difference of the two signals. He showed that the error will
be zero if the spectrum of A(t) e/ is single sided. It is not
necessary for the signal to be narrow band. A convenient
and useful theorem for the study of Hilbert transforms was
given by Bedrosian [20]. It relates the Hilbert transform of
a product of two signals to the Hilbert transform of each
signal.

“Instantaneous’’ frequency implies that we are dealing
with a local concept, but to calculate the Hilbert transform,
the signal for all time must be used. This paradoxical sit-
uation was analyzed by Vakman [191], who set up mild and
reasonable conditions for the formation of acomplex signal
and showed that these conditions lead to the analytic sig-
nal. He points out that in reality only a small band around
the instantaneous frequency, the ““active band,” is needed
to approximate the analytic signal [4], [106], [191].

He makes the interesting observation that, very often,
quantities defined globally can, under certain circuin-
stances, be described advantageously by local concepts as,
for example, is the case with electromagnetic waves, where
in principle we are dealing with waves spread out through
space, but under certain conditions, the light ray method
is appropriate and useful.

The identification of the derivative of the phase with the
concept of instantaneous frequency must not be taken too
literally. The relation of the derivative of the phase and the
“frequency’’ that appears in the spectrum has been inves-
tigated by Ville [194], Fink [74), and Mandel {131]. Consider
at each instant keeping track of the instantaneous fre-
quency and asking for the average frequency. That would
be given by the time average

(p')7 = S @' (]s(®|> dt  (time average). (8.5)
If we compare this to the mean frequency as defined by the
spectrum,
(w)s = S w|S(w)|? dw  (spectral average)  (8.6)
it is easy to prove that they are identical,
(wys = (L)) 8.7)

which argues for the identification of the derivative of the
phase as the instantaneous frequency. However, if one cal-
culates the second moments, the identification is no longer
compatible because they are not equal. In fact [74], [131),
[194],

(s = (Ut + S A dt. (8.8)

Also, the standard deviation of the spectral average is
0? = (w?)s — (w)%,and by asimilar expression for the time
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average, we have

o} = o} + S A dt. (8.9)

Mandel [131] has emphasized that the derivative of the
phase does not always coincide with the frequencies that
appear in the spectrum, although the averages are equal,
as per Eq. (8.7). In fact it is very easy to construct examples
where the derivative of the phase of an analytic signal
(whose spectrum consists of only positive frequencies) may
be negative at certain times. Of course one can define
instantaneous frequency to be the derivative of the phase,
but the conceptual notion embodied in the phrase will not
always be reflected in the definition. We note that if there
is no amplitude modulation, the two coincide, and we fur-
ther note that the second term of Eq. (8.9) is identical to the
expected value of the local spread, as defined by Eq. (4.39).

From the perspective of joint time-frequency distribu-
tions, instantaneous frequency is defined as the average
frequency at a particular time, that is, the mean conditional
moment of frequency. We have already seen that there are
an infinite number of distributions which give the deriv-
ative of the phase for the mean conditional value of fre-
quency. The condition for this to hold is given by Eq. (4.28)
and is usually considered an important and desirable attri-
bute of a distribution. However, we note that the result is
true for any complex signal, not justthe analytic signal. One
may argue that the condition on these distributions should
be that the conditional moment of frequency be the deriv-
ative of the phase for only certain types of signals, or it
should be the derivative of the phase in some approximate
sense. It can also be argued that the result should be the
derivative of the phase of the analytic signal, even if the
actual signal is used in the calculation of the distribution.
More fundamentally, a theory of time-frequency distri-
butions should predict the proper expression for instan-
taneous frequency and the “answer’’ should not have to be
imposed. In addition we point out that some of the distri-
butions which give the derivative of the phase for the first
conditional moment give improper results for the second
conditional moment, as discussed in Section IV. This indi-
cates that we do not have a fully consistent theory. Con-
siderable further research is needed to clarify the relations
between the instantaneous frequency, joint time-fre-
quency distributions, and the result implied by the works
of Ville, Fink, and Mandel, Eq. (8.9).

From the practical point of view the question arises as to
whether the actual signal or the analytic signal should be
used when calculating a joint time-frequency distribution.
Many have advocated using the analytic signal. There are
three basic reasons for this advocacy. First, as we have dis-
cussed, some distributions give the derivative of the phase
for the conditional first moment. Hence it is argued that we
should use the analytic signal because the instantaneous
frequency is defined in terms of the analytic signal. If one
wants to use these distributions for the estimation of the
instantaneous frequencies, and that is certainly an impor-
tant application, then the analytic signal should be used.
Whileitistrue thatadistribution of theanalytic signal dram-
atizes the instantaneous frequency concentration for many
signals, the question of what it hides of the original signal
has not been fully addressed. We point out that when the
analytic signal is used, the marginals of the original signal

COHEN: TIME-FREQUENCY DISTRIBUTIONS

are not properly given. Second, the analytic signal does not
have negative frequencies and therefore cannot cause
interference terms with the positive frequencies. Although
eliminating the negative frequencies does eliminate their
overlap, it does not eliminate the interference of the pos-
itive frequencies with other positive frequencies. There will
always be interference terms, no matter what part of the
signal is eliminated, since thatis an inherent property of the
bilinear distributions. The third argument for using the ana-
lytic signal is that aliasing is eliminated and the sampling
rate is reduced to the standard Nyquist rate [26].

B. Relation to Quantum Mechanics

The fundamental notion of classical mechanics is that
from a knowledge of the initial positions and velocities of
a particle, and the knowledge of the forces, one can predict
exactly what the position and velocity of the particle will be
at a later time. The equation of evolution in classical
mechanics is Newton’s second law of motion. The break-
down of classical mechanics and the realization that the
deterministic viewpoint is incorrect because the laws of
nature only predict the probability where a particle will be,
is one of the greatest intellectual achievements of human-
kind. In addition it has had profound practical conse-
quences as evidenced by the modern devices based on
quantum effects. The fundamental idea of modern physics
is that we can only predict probabilities for observables such
as position and velocity, and that this is not a reflection of
human ignorance but rather the way that nature operates.
The probabilities are predicted by solving Schrodinger’s
equation of motion, which gives the wave function of posi-
tion at time t. The probability of finding the particle at posi-
tion g attime tis then the absolute square of the wave func-
tion. Another dramatic departure of quantum mechanics
from classical mechanics is that physical observables are
represented by operators and not functions. The noncom-
mutation of operators has profound consequences regard-
ing the simultaneous measurability of observables. We
should point out that in quantum mechanics we may have
an additional level of description. That is the case where we
do not know, because of human ignorance, what the wave
function is and assign a probability to the possible wave
functions. This is done in quantum statistical mechanics
and is similar to the treatment of stochastic signal in signal
theory. We emphasize that in quantum mechanics we are
starting with a probability description, butin signal analysis
we are starting with a deterministic description.

There is a partial formal mathematical correspondence
between quantum mechanics and signal analysis. Histor-
ically work on joint time-frequency distributions has often
been guided by corresponding developments in quantum
mechanics. Indeed the original papers of Gabor and Ville
continuously evoked the quantum analogy. However, the
analogy is formal only and because the interpretation isdra-
matically different, one must be particularly cautious in
transposing and interpreting results from one field to
another. What may be reasonable in quantum mechanics
does not necessarily make it resonable in signal theory.
Indeed it is often preposterous in signal theory, as will be
illustrated with a concrete example.

The similarity comes about because in quantum mechan-
ics the probability distribution for finding the particle at a
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certain position is the absolute square of the wave function,
and the probability for finding the momentum is the abso-
lute square of the Fourier transform of the wave function.
Thus one can associate the signal with the wave function,
time with position, and frequency with momentum. The
marginal conditions are formally the same, although the
variables are different. The first fundamental difference is
that quantum mechanics is an inherently probabilistic the-
ory. Its probabilisticinterpretation is not aquestion of igno-
rance but of the fundamental character of the physical
world. In signal theory, on the other hand, the signal is
inherently deterministic, and the absolute square of the sig-
nalis an intensity with no probability connotations. We now
come to the most important distinction. In quantum
mechanics, physical quantities are always associated with
operators. It is the fundamental tenet of quantum mechan-
ics that what can be measured for an observable are the
eigenvalues of its operator. This produces some seemingly
bizarre results, which are nonetheless true and have been
verified experimentally. It is the basis for the quantization
of physical quantities and has no counterpart in signal the-
ory. For a dramatic example, consider the sum of two con-
tinuous quantities. In quantum mechanics the sum is not
necessarily continuous. Specifically consider the position
g and momentum p, which are continuous variables; in
quantum mechanics g* + p* (appropriately dimensioned)
is never continuous under any circumstances, for any par-
ticle. It is always quantized, that is, it can have only certain
values. The corresponding statement in signal analysis
would be that time and frequency are continuous but that
£ + o’ (appropriately dimensioned) is never so, and of
course that would be a ludicrous statement to make in sig-
nal analysis. Hence, even though there is a mathematical
analogy with quantum mechanics, we cannot take the
results of quantum mechanics over to joint time-frequency
distributions indiscriminately. In Table 4 we outline the for-
mal mathematical correspondence between signal analysis
and quantum mechanics.

C. Uncertainty Principle and Joint Distributions

The uncertainty principle expresses a fundamentat rela-
tionship between the standard deviation of a function and

the standard deviation of its Fourier transform. In partic-
ular, the standard deviations are defined by

(ay?

S (t — ?s(v}? dt

(Mﬂ=gw—m%mvw (8.10)

wheret and ware the mean time and frequency. The uncer-
tainty principle is
AtAw = ] 8171

for any signal. In common usage At and Aw are called the
duration and the bandwidth of a signal.

We would like to clarify the role of the uncertainty prin-
ciple and its significance with regard to joint distributions.
We will show that the uncertainty principle is a relationship
concerning the marginals only and has no bearing on the
existence of joint distributions. The phrase ““uncertainty’’
was coined in quantum mechanics, where its connotation
is appropriate since quantum mechanics is an inherently
probabilistic theory. In quantum mechanics the standard
deviations involve the measurement of physical observa-
bles. However, in nonprobabilistic contexts the uncertainly
principle should be thought of as expressing the fact that
a function and its Fourier transform cannot be made arbi-
trarily narrow.

The proper interpretation of the uncertainty relation in
signal analysis has been emphasized by many. In his paper
on the representation of signals, for example, Lerner [124]
states that the uncertainty principle “. . . has tempted some
individuals to draw unwarranted parallels to the uncer-
tainty principle in quantum mechanics. . . The analogy is
formal only.” Equally to the point is Skolnik [177]: “The use
of the word ‘uncertainty’ is amisnomer, for there is nothing
uncertain about the ‘uncertainty relation.”. . . It states the
well-known mathematical fact that a narrow waveform
yields a wide spectrum and a wide waveform yields a nar-
row spectrum and both the time waveform and the fre-
quency spectrum cannot be made arbitrarily small simul-
taneously.”

In both signal theory and quantum theory we have an
uncertainty principle. In quantum mechanics itrefers to the
probabilistic aspects of measuring quantities, and the word

Table 4 Relationship Between Quantum Mechanics and Signal Analysis*

Quantum Mechanics
(Inherently Probabilistic)

Signal Analysis
(Deterministic)

Position q (random)
Momentum p (random)
Time t

Wave function ¥ig, O

Momentum wave function

Probability of position at time ¢
Probability of momentum at time t
Expected value of position
Expected value of momentum

l¥(g, BI?

lo(p, OI?

(@) =[ql¥q, b* dg
(p> = §plelp, H|* dp
0, = V(g") — (g)?
0, = V(P — (p)°
0,0, = h/2

Standard deviation of position
Standard deviation of momentum
Uncertainty principle

1
dlp, t) = o S ¥(q, ) e%P/" dg

Time t

Frequency w

No correspondence

Signal s(t)

Spectrum S(w) = % g s(t) e ™ dt
Energy density s

Energy density spectrum |S(w)|?

Mean time (ty = § t|sv)* dt

Mean frequency (@) = [ 0|Sw)|* dw

Duration T = —()?
Bandwidth B = V(w) — (w)?

Time-bandwidth relation BT =}

*The formal mathematical correspondence is (position, momentum) « (time, frequency). The wave function in quantum mechanics depends on time, but
this has no formal correspondence in signal analysis. Planck’s constant # may be taken equal to 1. Quantum mechanics is an inherently probabilistic theory
in contrast to signal analysis, which is deterministic. Hence while there is the formal mathematical correspondence, the interpretation of results is very different.
Both quantum mechanics and signal theory have another level of indeterminism where the wave function or the signal is ensemble averaged.

PROCEEDINGS OF THE IEEE, VOL. 77, NO. 7, JULY 1989



““uncertainty” connotes the right meaning. It is one of the
most profound discoveries and refers to the measurement
of physical quantities represented by operators that do not
commute, such as position and momentum. In signal anal-
ysis it applies only to the broadness of signals, which are
related to each other by Fourier transforms, and it does not
relate to measurement in the quantum mechanical sense.
As Ackroyd [3] has emphasized, “‘There is a misconception
that it is not possible to measure the t — f energy density
of a given waveform and that this is a consequence of
Gabor’s uncertainty relation. However, the uncertainty
principle of waveform analysis is not concerned with the
measurement of t — f energy density distributions: instead
it states that if the effective bandwidth of a signal is W then
the effective duration cannot be less than about 1/W (and
conversely). ..”

Additional confusion arises when the At and Aw, which
are used in the uncertainty principle to connote standard
deviations or broadness, are misconstrued with the differ-
ential elements of calculus. They are not the same, and the
uncertainty principle does not say that we cannot make the
differential elements as small as we like. The two uses of
A should not be confused.

We now address the question of the relationship of the
uncertainty principle and joint distributions. Our point is
that it has no bearing on the question of joint distributions
and relates to the product of the standard deviations of the
marginals. To understand this, suppose we have a joint dis-
tribution and wish to calculate the product (ADHAw). It
would be

(At(Aw)

[

Sg (t — DPP(t, w) dt dw

: SS ( — @)Y P, w) dt dw 8.12)

]

S (t — D¥s)]? dt - S (@ — )5 dw.
8.13)

Thisisthe usual starting pointin the derivation of the uncer-
tainty principle, and hence the uncertainty principle fol-
lows. This demonstration is rather trivial; however, since
there is a general sense that the uncertainty principle has
to do with correlations between measurements of time and
frequency, the preceding steps force the reader to see that
this is not the case. The uncertainty principle is calculated
only from the marginals. Hence any joint distribution that
yields the marginals will give the uncertainty principle. It
has nothing to do with correlations between time and fre-
quency or the measurement for small times and frequen-
cies. What it does say is that the marginals are functionally
dependent. But the fact that marginals are related does not
imply correlation between the variables and has nothing to
do with the existence or nonexistence of a joint distribu-
tion.

It is often stated that one cannot have proper positive
distributions because that would violate the uncertainty
principle. But it is well known that the Wigner distribution
is positive for some signals. If positivity and the uncertainty
principle were incompatible, it must be so for all cases. Fur-
thermore it is possible to generate an infinite number of
positive distributions which satisfy the marginals. Also, it
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is sometimes stated that if one averages the Wigner dis-
tribution over an area greater than that given by the uncer-
tainty principle, we will get a positive answer. That is not
the case. Many counterexamples have been given.

IX. APPLICATIONS

There has been a considerable effort to apply these dis-
tributions to almost every field where nonstationary signals
arise. The purpose of the applications has varied consid-
erably, from the simple graphic presentation of the results,
with the expectation that they will reveal more than other
methods, to sophisticated manipulation of the distribution.
We will emphasize how these distributions have been
applied, but we will not go into detail about the particular
numerical techniques. The applications can be broadly cat-
egorized according to three methodologies. First is cal-
culating the distribution to see whether it does reveal more
information than other tools such as the spectrogram. An
example s the application to speech, where one hopes more
of the fine points of speech such as transients and tran-
sitions will be revealed. Second is to use a particular prop-
erty of the distribution which clearly and robustly repre-
sents the time-frequency content for that property, for
example, correlating instantaneous frequency with phys-
ical quantities one is trying to obtain. Third is to use the
distribution as a carrier of the information of a signal and
without concern as to whether the distribution truly rep-
resents the time-frequency energy density. Many appli-
cations do not fall clearly into the above categories, but it
is nevertheless useful to keep them in mind because the
success or failure ofadistributionin a particular application
does not necessarily imply success or failure in a different
application. For example, the Wigner distribution may be
hard to interpret in the analysis of speech, but may be use-
ful for recognition. For applications where the interpre-
tation as true densities is not necessary, the violation of cer-
tain properties, such as the marginals, may be acceptable.

Perhaps the earliest appfication that took advantage of
the Wigner distribution was the work of Boashash [35]. His
method is based on correlating a physical quantity of the
problem at hand with a feature in the Wigner distribution,
usually the instantaneous frequency. The importance of
Boashash’s idea is that one does not have to rely on a full
interpretation of the distribution as a joint density but only
that some of its predictions need be correct. For example,
aslongasoneisconfidentthat theinstantaneous frequency
is well described by the distribution, the fact that other
properties may not be is unimportant. His first application
of this was to geophysical exploration. The basic idea is to
send a signal through the ground, measure the resulting
signal, and calculate the Wigner distribution. From the dis-
tribution one determines the instantaneous frequency, and
from the instantaneous frequency one calculates the atten-
uation and dispersion. This method has been used to study
many diverse problems. Boashash etal.[27],[28] studied the
absorption and dispersion effects in the earth. Imberger
and Boashash [94], [95] have applied the method to analyze
the temperature gradient microstructure in the ocean by
relating the instantaneous frequency to the dissipation of
kinetic energy. Bazelaire and Viallix [19] have also used the
Wigner distribution to obtain data to measure the absorp-
tion and dispersion coefficients of the ground and have for-
mulated a new understanding of seismic noise.
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Fig. 8. Contour plots of Wigner distribution for the output of a simulated ultrasonic trans-
ducer for various design parameters. The advantage of using a time-frequency distri-

bution is that one can readily see the main features of the output.

Of particular significance was the work of Janse and Kaizer
[97]. They developed innovative techniques and laid the
foundation for the use of these distributions as practical
tools. They calculated the Wigner distribution foranumber
of standard filters, and found it to be a particularly powerful
means of handling the inherently nonstationary signals
encountered in loudspeaker design.

In the design of devices to produce waves, time-fre-
quency distributions are an effective and comprehensive
indicator of the characteristics of the output. We illustrate
this with the work of Marinovic and Smith {137], who used
the Wigner distribution as an aid in the design and analysis
of ultrasonic transducers. An ultrasonic transducer is a
device for producing sound waves and is typically used as
the source of waves in medical imaging, sonar, and so on.
The most common means of producing high-frequency
sound is by exciting a piezoelectric crystal such as a quartz.
When mechanical stress is applied to these crystals, the
polarization is changed, producing an electric field. Con-
versely when an electric field is applied, the crystal is
strained. By using an oscillating electric field the crystal is
made to vibrate, producing acoustic waves in the medium.
The output of a transducer depends on many factors, such
as shape, thickness, the electronic fields driving it, and the
coupling with the medium. In designing a transducer one
is interested in the output having certain desirable char-
acteristics. Typically what is required is, for the output, to
have a uniform time spread over the frequencies. Uniform-
ity is desired so that there are no aberrations with respect
to different frequencies acting in different ways. A number
of simulation models have been devised which predict the
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general characteristics of the output with the various
parameters under the designer’s control. The advantage of
using a time-frequency distribution is that one can quickly
and effectively see the effects of varying the parameters. In
Fig. 8 we show various contour plots of the Wigner distri-
bution of the output of a simulation program for designing
transducers for three choices of design parameters. In Fig.
8(a) the output has a very poor uniformity of energy in the
various frequencies. In Fig. 8(b) there is considerable
improvement, but no uniformity yet, and in Fig. 8(c) we have
an ideal case, the output being quite uniform for the fre-
quencies produced. The advantage of using a joint time-
frequency distribution is that within one picture the char-
acteristics of the transducer are readily discerned and one
does not have to do various independent time and fre-
quency analyses.

An example that illustrates the use of these distributions
fordiscoveryand classification isthe work of Barryand Cole
[15] on muscle sounds. When a muscle contracts, it pro-
duces sounds that can be picked up readily by a micro-
phone. It has been discovered that these sounds are not
due to the muscle vibrating as a simple string. The work of
Barry and Cole [15] and others is aimed at correlating the
properties of the sound with the characteristics of the mus-
cle. If one had a good understanding of the different mech-
anisms that are producing significant changes in the dis-
tribution, one would potentially have an excellent
diagnostic tool since these acoustic waves would provide
a noninvasive diagnostic tool. Fig. 9 shows the distribution
of Choi and Williams for two different sounds produced by
a muscle. The first is produced during an isometric con-
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Fig. 9. Choi-Williams distribution for two different sounds produced by a muscle. (a)

During isometric contraction. (b) When muscle is twitched.
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traction and the second when the muscle is twitched. The
general features are quite reproducible from muscle to
muscle and hence reflect some general characteristics of
muscle contraction. On a fundamental level these figures
dramatically show that average frequency or instantaneous
frequency changes significantly during a muscle contrac-
tion and gives an indication of the spread around the aver-
age. The sounds have been correlated with characteristics
of the muscle such as its stiffness. The important point from
our perspective isthat, as Barry and Cole[15] pointout, these
“time-dependent frequency changes in the acoustical sig-
nals would be hard to discern with standard frequency
domain analysis.”

The propagation of a signal through different media is a
very common occurrence in nature, andsinceitis generally
accompanied by time delays and changes in frequencies,
acombined time-frequency description is natural. The sim-
plest propagation of a disturbance is one governed by the
equation u,,(x, t) = v?uy(x, t), where u is the physical quan-
tity that is changing (e.g., pressure or electric field), x and
t are position and time, respectively, and v is the velocity
of propagation. If we start with a disturbance at t = 0 given
by ulx, 0), then the disturbance at a [ater time will be given
by the same function, displaced by vt, that is, the disturb-
ance will propagate with the same shape. Mathematically
this is explained by observing that any function of the form
u(x — vt) is a solution. Examples are electromagnetic waves
in free space and sound waves in air (to a large extent).
indeed the reason that a person standing 10 ft away from
an object sees and hears the same thing as a person 20 ft
away is that the shape of the disturbance has not changed.

However, a typical wave equation governing the prop-
agation of a wave in a medium contains extra terms and
does not admit solutions of the form u(x — vt) for an arbi-
trary u. The equation is a wave equation because it does
admit propagating waves of the form e/*“'~%_ Only si-
nusoidal waves propagate without change. One of the most
important effects in wave propagation is that the phase
velocity may depend on the wavelength. Since an arbitrary
disturbance can be decomposed into sinusoids by way of
the Fourier transform and each will move at a different
velocity, the recombination of them at a later time will not
preserve the shape of the signal. This phenomenon, that
sinusoidal waves of different frequencies propagate with
different velocities, is called dispersion. The reason for this
term is that the earliest discovered ramification was that a
prism can ““disperse’” white light into different colors since
they travel with different speeds in glass. If the velocity
decreases with frequency, one says the dispersion is ‘‘nor-
mal;” otherwise it is termed “anomalous” dispersion.
Another important effect in the propagation of a signal is
the attenuation of a wave, the dying out or absorption. The
energy is typically dissipated into heat. Again, the amount
of attenuation depends on the medium and the frequency.
In the case of sound in normal conditions there is almost
no attenuation, and that is why we are able to hear from far
away. In contrast high-frequency electromagnetic waves
are damped within a short distance of entering the surface
of a conductor. Also, as a wave propagates from one
medium to another, part of it gets reflected and part trans-
mitted.

We are now in a position to understand why a time-fre-
quency analysis offers an effective description of a signal
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that has propagated through different media. At each
instant of time the signal we measure will be the super-
position of a number of waves. We may still be measuring
the initial wave more or less as it left the source. Super-
imposed on that will be a delayed signal from a reflection
boundary, and that signal may have the same shape as the
original one, but delayed in time. The superposition of these
two signals may look quite complicated, but in the time-
frequency plane we will simply see the distribution of the
original signal and the same distribution translated upward
with respect to time. This would be immediately recogniz-
able. If in addition we have a wave that was delayed and
dispersed, this will be seen in a time-frequency plot as an
image similar to the original, displaced upward with a cer-
tain amount of relative bending in those frequencies were
the dispersion occurred.

To illustrate we use the work of Boashash and Bazelaire
[36] and Boles and Boashash [32] on geophysical explora-
tion. Seismic signals are particularly rich and varied due to
layers of different media. Not only are there layers of var-
ious solids with different properties (e.g., shale, sandstone),
but one has layers of water and gas beneath the surface. In
addition if one is exploring off share, the signal obtained
from sources beneath the seabed are concealed by the
reverberations of the water. What is typically done in explo-
ration is to produce a wave at the surface and measure the
resulting wave at one or more places down the field. The
initial wave is generated by different means, such as by an
explosion caused by dynamite or by vibrating a metal plate
coupled to the earth. The resulting acoustic wave travels
through the different layers and is reflected upward with
possible multiple reflections. The velocity of different lay-
ers varies considerably. For air it is about 1000 ft/s and for
solid rock it may be as high as 20 000 ft/s. The resulting sig-
nal will be a multicomponent signal, and if we did have a
good time-frequency distribution, each component would
stand out in the time-frequency plane. A schematic dia-
gram of what such a distribution would look like is pre-
sented in Fig. 10, which is adapted from Boles and Boashash
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FREQUENCY —

Fig. 10. Schematic diagram of a time-frequency distribu-
tion for a wave reflected from media with different char-
acteristics. Curve a—initial signal; curve b—distribution of
asignal that has gone through a layer with little dispersion;
curve c—from layer with normal dispersion. The high fre-
quencies travel at a slower speed and arrive at a relatively
later time. Also the high frequencies are cut off for b and ¢,
indicating attenuation. (Adopted from Boles and Boashash
[32] and Boashash and Bazelaire [36].)

(32]. The different components are labeled a-c, where a is
the original signal at the source. The delays are due to
reflection from deeper layers which arrive at a later time.
The bending upward at the high frequencies is a reflection
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of the normal dispersion because the high frequencies
travel more sfowly and arrive at a relatively later time. For
the components that are delayed longest and have traveled
furthest, the high frequencies are cut off because of atten-
uation. The advantage of using a time-frequency descrip-
tion is that one can see all these effects in one picture.
Potentially one may obtain the parameters by direct mea-
surement of the delay, attenuation, and dispersion and
thereby identify the media through which it propagated.
Synthesis methods can be used to decompose the signal
into its components. We have gone into some length in
describing this type of situation because it is very typical
of a variety of phenomena and will most likely be one of the
common uses of time-frequency distributions. The imple-
mentation of the idealized picture described is currently
complicated by various factors. In particular, if the Wigner
distribution is used, in addition to the “real components”’
we have the cross terms, and for more than a few com-
ponents the number of cross terms is very large. We also
have noise. Also, because the layers are not uniform, the
simple picture illustrated above becomes considerably
more complicated. Boles and Boashash [32] have devised
a number of methods to overcome these difficulties and
have applied their analysis to real and simulated data. We
have already seen that the new distribution of Choiand Wil-
liams [51] reduces the cross terms dramatically. It would
certainly be interesting to apply that distribution to such
a situation.

An innovative use of these distributions has been the
work of Marinovic and Eichmann [134], [135], who devel-
oped a novel approach that does not depend on inter-
preting them as true distributions. The Wigner distribution
is regarded as the kernel of an integral equation, and the
corresponding eigenvalues and eigenfunctions are found.
The expansion in terms of the eigenfunctions has been used
for pattern recognition as the eigenvalues have been found
to be effective classifiers of shapes. This decomposition may
also be used to suppress the effects of noise in the Wigner
distribution [136]. The noise is spread through all the terms
of the decomposition and, retaining only the first few terms
of the expansion, suppresses the noise considerably. The
expansion method was applied by Marinovic and Smith {136]
to show how the reconstructed distribution, which retains
only the first few terms of the singular value expansion,
allows one to extract the local frequency information in the
case of echo signals which get corrupted by interference
and noise.

Speech is one of the most complex nonstationary signals
and a natural application for these time-frequency distri-
butions. Chester and coworkers [49], [50] were the first to
apply the Wigner distribution for the analysis and recog-
nition of speech and constructed hardware for its calcu-
lation. They pointed out that the Wigner distribution has
considerable noise sensitivity and that the interpretation is
not straightforward, as with the spectrogram. However they
found it useful for analysis and recognition. Their use of the
Wigner distribution is based on the possibility thatthe char-
acteristic for speech signals is very robust and hence may
be used for recognition. Pickover and Cohen [156] used a
number of distributions to study speech and found them
difficult to interpret compared to the standard spectro-
gram. They pinpointed the difficulty with each distribution
they considered. Riley [170] has considered the question of
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what kinds of distributions would be desirable to use in
speech analysis and has used smoothed distributions to
study formant structure. He devised a means of detecting
and extracting the relevant speech parameters. Velez and
Absher [193] used the smoothed Wigner distribution to dis-
play formant structure in speech and found it to be an effec-
tive clarifier of speech sounds. We have already mentioned
the work of Janse and Kaizer [97] in regard to loudspeaker
design. Preis [161] used the Wigner distribution to study
various audio signals and found that the combined rep-
resentation presents a clearer view of the various time-fre-
quency quantities. Szu (1891 has given acomprehensive dis-
cussion of the applications of bilinear distributions for the
study of various acoustical signals, and in particular to ques-
tions of the signal processing involved in hearing.

Pattern recognition schemes use the distribution as a two-
dimensional representation, not necessarily time and fre-
quency [1], [30], [37], [65], [115]. Particular interpretations of
a joint distribution as representing the energy is not
required for this type of analysis.

Kumar and Carroll [116], [117] considered the use of the
Wigner distribution function for the binary detection prob-
lem where one has to make a yes-no decision as to the exis-
tence of asignal in the presence of additive noise. They used
the integral along the instantaneous frequency of the Wig-
ner distribution as a statistic. The Wigner distribution
method performed comparably to cross-correlation meth-
ods. They point out possible advantages for nonstationary
signals of more complexity. A detection scheme for deter-
mining the instantaneous frequency of a chirp in additive
noise was considered by Kay and Boudreaux-Bartels [104].
They used the likelihood ratio test to show that it is optimal
to integrate the distribution along all straight lines in the
time-frequency plane and choose the maximum value to
compare to a threshold. This reflects the fact that for chirp-
like signals the concentration of the distribution is maxi-
mum along the instantaneous frequency. Szu [188] has
devised a number of methods to use these distributions for
passive surveillance. He has taken advantage of the unique
symmetry properties of the Wigner distribution. The syn-
thesis method developed by Boudreaux-Bartels and Parks
[39], [41] has been used to separate two signals with dif-
ferent characteristics. A general approach to the detection
problem in the time-frequency plane has been formulated
by Flandrin [78]. Harris and Abu Salem [88] have compared
the performance of the Wigner distribution with other
methods for the case of a sinusoid in the presence of addi-
tive white noise. They found that for the estimation of
amplitude and frequency the Wigner distribution behaves
poorly in noise but has the advantage that a priori know!-
edge of some of the characteristics of the signal is not
required as is the case with some other methods. Cohen,
Boudreaux-Bartels, and Kadambe [57] have devised a time-
frequency approach to tracking mono- and multicompo-
nent chirp signals in noise. Boashash and O’Shea [31] have
extended the work of Kumar and Carroll and applied their
method to the identification of underwater acoustic tran-
sients, in particular machine noise. They developed a gen-
eral methodology for use of the Wigner distribution and
cross Wigner distribution for detection problems.

The Wigner distribution has been used extensively as a
tool to study radiance functions and coherence in optics,
and methods for its production and optical filtering and
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display have been proposed and studied [12], [13], [16], [42],
[44], [64], [86], [96], [103], [105], [149], [182], [184].

Linear predictive and autoregressive methods have been
considered by Ramamoorthy et al. [165). They showed that
it results in good time and frequency resolutions, although
they find that the interpretation is difficult. Boashash and
coworkers [30], [129] showed that autoregressive methods
can improve resolution if a careful choice is made of the
parameters, otherwise spurious peaks occur which have no
significance.

In a unique application Choi, Williams, and Zaveri [52]
used the distribution discussed in Section 111-G to evaluate
the classify “event-related potentials’’ where certain words
were used to induce brain wave responses in patients. The
signal obtained is represented by the distribution and used
to classify the signal in terms of the types of stimuli. They
found the distribution given by Eq. (3.86) to be very effective
as it reduces the masking effects of the cross terms.

Breed and Posch [43] have used the Wigner distribution
to study an array of receivers and have formulated it in terms
of the spatial parameters. They show that is provides a use-
ful range and azimuth estimator. This approach works very
well because for moderate ranges the signal has a quadratic
phase spatial variation. These are precisely the cases that
the Wigner distribution is well suited to handle, as we have
seen in Section V. Swindlehurst and Kailath [185] have also
devised a method for using the Wigner distribution for
source localization for an array of receivers in the near-field
approximation.

The relationship between the evolutionary spectrum of
Priestley [162] and the Wigner distribution has been made
by Hammond and Harrison [87].

The theory of these distributions has been applied to sto-
chastic signals, and many of the original papers in the field
addressed this aspect of the problem. This involves a fur-
ther averaging to take into account the distribution of sig-
nals. Comprehensive work has been done by Janssen [99],
Martin [139], Martin and Flandrin [140], and White [196].
Martin [139] has coined the phrase Wigner-Ville spectrum
to indicate the Wigner distribution that has been ensemble
averaged over the possible realizations of the signal. White
[196] and White and Boashash [197], [198] have devised spe-
cific methods for obtaining the important parameters of a
random process and have given expressions for the errors
involved in estimating the parameters. Posch [159] has
shown that if Eq. (4.10) is satisfied by the kernel, then the
distribution will be the power spectrum when the input is
a random stationary signal.

In concluding this summary of the applications, we
emphasize that these distributions have not only been use-
ful to study old ideas, but have also led to new concepts.
An innovative concept has been introduced by Szu and
Coulfield [186), where they address the question of how to
compare the frequency contents of two signals. They
devised a four-dimensional Rihaczek distribution, the vari-
ables being time and frequency for each signal. From this
correlated distribution they compare the frequency con-
tents of two signals.

X. CoNCLUSION

In conclusion we discuss some general attitudes that have
arisen in regard to these time-frequency distributions. The
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enigma of these distributions is that they sometimes give
very reasonable results and sometimes absurd ones. For
example, the Wigner distribution gives a very reasonable
result for the first conditional moment of frequency, butan
unreasonable one for the second conditional moment. A
common attitude is that when we do get unacceptable
results, we will know that the theory does not apply, and
we will notuse it for those situations. The problem with that
point of view is how do you know when the results are
absurd? Sometimes it is obvious, but not always. The fact
thatthese distributions cannot be used in a consistent man-
ner is one of the main areas that needs much further the-
oretical development.

One of the majorissues in the field has always been which
distribution, if any, is the absolute “best.” There has been
ageneral attempt to set up a set of desirable conditions and
totryto prove thatonly one distribution fits them. Typically,
however, the list is not complete with the obvious require-
ments, because the author knows that the added desirable
properties would not be satisfied by the distribution he is
advocating. Also these lists very often contain require-
ments that are questionable and are obviously putinto force
an issue. An example is the requirement that Moyal's for-
mula should hold, but it is unclear why. If we found a dis-
tribution for which the Moyal formula did not hold but
nevertheless behaved well, would we reject it on that basis?
Clearly not. Witness the recent discovery of the Choi-Wil-
liams distribution. Another requirement commonly
imposed is the finite support property, that is, for a finite-
duration signal the distribution should be zero before the
signal stops and after the signal ends. That certainly seems
like a desirable condition for if there is no signal, we expect
the distribution to be zero. (However, we know from Sec-
tion Vthat there are distributions, for example, the Wigner,
which have the finite-support property but are not nec-
essarily zero in regions where the signal is zero.) But then
the condition should simply be that the distribution should
be zero if the signal is zero and not just the finite-support
property. The positivity condition is also usually left out,
although everyone concerned with choosing a best distri-
bution mentions the advantage of having a positive distri-
bution. Wealso pointout thateven plausible sounding con-
ditions have to be applied carefully. An often stated
requirement is that the first conditional moment of fre-
quency be the derivative of the phase of the signal because
it corresponds to instantaneous frequency. This may sound
reasonable, but we already discussed in Section VIii the
difficulties of making a total identification of instantaneous
frequency, first conditional moment, and derivative of the
phase. As has been pointed out in Section Vill, there is the
theoretical difficulty that the derivative of the phase does
not always correspond to the frequencies in the Fourier
spectrum [74], [131]. This indicates that there may be a pos-
sible inherent inconsistency with the marginal require-
ment. This problem requires considerable further inves-
tigation. Also the requirement should be in terms of the
analytic signal because that is how instantaneous fre-
quency is defined. Moreover it is well known that the use-
fulness of the definition is meaningful only for certain types
of signals, and therefore it is questionable whether we
should insist that this hold for all signals. Given all these
issues, it is not straightforward to set up the conditions for
the satisfaction of the concept of instantaneous frequency.
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Indeed, a comprehensive theory of a time-varying spec-
trum should predict what instantaneous frequency is.

Another approach is to argue that the performance of a
distribution is best for a particular property that is deemed
desirable. In a penetrating work Janssen [98] considered the
performance of distributions for signals of the form s(t) =
e/”Y and attempted to determine which distribution is more
concentrated along the line w = ¢'(t). Toward that end he
needed a method to determine the spread along that line.
As we have seen, the concept of spread using these dis-
tributions is far from clear, so Janssen squared the distri-
bution to avoid the fact that the distributions may go neg-
ative. Some have assumed that Janssen showed that the
Wigner distribution has the least amount of spread around
the derivative of the phase. However, Janssen proved this
only for the class of distributions that have kernels of the
form ¢, 7) = e/, Also, we have seen that for multicom-
ponent signals there are distributions that behave better
than the Wigner distribution in the sense that the cross
terms are smaller in magnitude. Hence it is far from clear
whether “optimality’” should be set up for mono or mul-
ticomponent signals, or perhaps neither.

Another common argument for elevating a particular dis-
tribution is to argue, for example, that all time- and shift-
invariant distributions can be expressed as a “smoothed"”’
version of it and therefore degraded in some sense. In par-
ticular it is often stated that the time- and shift-invariant dis-
tributions may be written in the form

P(t, w) = SS gt — t, 0 — )W(t', ) dt’ dw’ (10.1)

where W(t, w) is the Wigner distribution, making it the ““fun-
damental”’ one. However, we have seen in Section [V that
we can equally well express the distributions in terms of,
for example, the Rihaczek distribution.

Another view is that the choice of distribution should
depend on the application and possibly the class of signals
used, much in the same spirit as differentwindow functions
are chosen in various applications of the spectrogram or
different sets of functions are used to expand the electro-
static potential depending on the geometry of the problem.
As with expansions in terms of a complete set of functions,
the choice is a matter of convenience, insight, and math-
ematical simplicity, which depends on the situation. Per-
haps the proper attitude should be that the choice of dis-
tribution should be signal or application dependent. Indeed
the recent work of Choi and Williams [51] and Nuttall [146],
[147], which uses the ambiguity plane to choose the kernel,
is an indication that different kernels may be appropriate
for different signals. This makes kernels signal dependent,
and hence the distributions are not necessarily bilinear any
longer. Given these exciting developments it appears that
at this stage of our knowledge, trying to prove which func-
tion is “‘best” is premature to say the least.

We now turn to what has been a fundamental issue with
these joint distributions, and that is the positivity question.
Everyone agrees that ideally a distribution should be pos-
itive since they are to be interpreted as densities. Many
proofs have been given that positive distributions satisfying
the marginals do not exist. The common plausibility argu-
ment relied on the uncertainty principle as discussed in
Section VIII. A thorough and profound analysis of the pos-
itivity question has been given by Mugur-Schachter [144],
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who has identified many of the questionable and hidden
assumptions that have gone into the proofs to show that
they do not exist. Even before positive distributions were
constructed, as explained in Section Ill, it was clear that
there could not be any inherent reason for their nonexis-
tence since the Wigner distribution is positive for certain
signals. Park and Margenau [154], in their work on joint
measurability, also analyzed the various arguments that
have been given for the nonexistence of positive distri-
butions and were able to construct a simple counterex-
ample. Of course we now know that positive distributions
are easily constructed, as in Section Ili-F, and that they do
yield the correct marginals and the uncertainty principle.

Itis afact thatdistributions which are bilinear functionals
of the signal cannot be positive for all signals [199], [200].
Joint densities and marginals appear in every field of sci-
ence and engineering, and certainly bilinearity is never
imposed on a distribution. Note that in time-frequency
analysis the marginals themselves are bilinear in the signal,
and hence bilinear distributions in the sense discussed here
are joint distributions which are bilinear to the square root
of the marginals. Now even the simplest proper joint dis-
tribution, the correlationless one [P(x, y) = Py(x) P)(y)], is a
product of the marginals and hence quartilinear to the
square root of the marginals. In general, proper joint dis-
tributions are highly nonlinear functionals of the marginals.
The possibility of using distributions that are not bilinear
in the signal needs considerably more research. That is not
to say that the class of bilinear distributions are not useful
or desirable. However, we should be clear about the con-
ceptual assumptions and interpretations.

Current knowledge has barely scratched the surface of
the possible distributions and methodologies that may be
used to describe a time-varying spectrum. There are an infi-
nite number of distributions, and only a few have been
explored. Although the concepts and techniques that have
been developed in the past 40 years are truly impressive,
it is clear that much more work lies ahead. The attempt to
understand what a time-varying spectrum is, and to rep-
resent the properties of a signal simultaneously in time and
frequency, is one of the most fundamental and challenging
aspects of analysis.

ADDITIONAL COMMENTS

I would like to mention some recent results and some
additions and omissions in the text.

Elimination of Aliasing in the Discrete Wigner Distribu-
tion. For a band-limited signal, the value of the signal at an
arbitrary time can be obtained from discrete sampled val-
ues if the sampling is done at the Nyquist rate or higher,
that is, at a sampling frequency w; = 2wmax, Where wp,y is
the highest frequency in the signal. As mentioned in Sec-
tion V-E, it has generally been believed that to reconstruct
the Wigner distribution from discrete samples, one must
sample the signal at twice this rate or higher; otherwise
aliasing will occur. Nuttall [206] has recently shown that the
higher sampling rate is unnecessary and has devised an effi-
cient alias-free method for the computation of the Wigner
distribution from a signal sampled at the Nyquist rate. The
key to his approach is to take into account all the available
information in the local autocorrelation function R(7) as
given by Eq. (3.64). By doubly Fourier transforming the local
autocorrelation function, Nuttall has shown that non-

PROCEEDINGS OF THE IEEE, VOL. 77, NO. 7, JULY 1989



overlapping diamond-shaped regions exist in the trans-
formed plane, each containing the fundmental informa-
tion, provided that the signal was sampled at the Nyquist
rate or higher. The end result of his analysis for obtaining
the Wigner distribution at an arbitrary time-frequency pair
is to construct first
s kTl < X
S - | n k}gm s(kT) e™ ™, if |o| < 7

0, otherwise

where s(kT) are the sampled signal values. The Wigner dis-
tribution is then constructed from S(w) according to

1 (e 1.\ el L1
= — - - + = .
W(t, w) o S S <w 2 0> eS| w 5 0] do

Nuttall has shown that this is the Wigner distribution of the
original continuous signal s(t) and is hence free of aliasing.
In practice, both S(w) and W(t, w) will be discretized in time
and frequency and accomplished by fast Fourier trans-
forms. We note that interpolation of the sampled values or
reconstitution of the continuous signal from the sampted
values is not necessary or utilized.

“Data-Adaptive” Distributions: As discussed in the Con-
clusion, the most common view point regarding time-fre-
quency distributions is to find a “best’”” one, which will be
used for all signals, although, as we mentioned, there are
recent indications that different distributions may be
appropriate for different signals. Recently Jones and Parks
[207], [208] have made an important contribution in devel-
oping and implementing a “‘data-adaptive’’ method for
devising a time-frequency distribution of a certain form.
They consider the short-time Fourier transform with a
Gaussian window where the parameters of the Gaussian
window are varied for each different point in the time-fre-
quency plane. The parameters are chosen so that the time-
frequency concentration of the locally dominant compo-
nentis maximized. They have applied this approach to both
idealized and real data with considerable effectiveness in
constructing distributions with high resolution.

Resolution Comparison: Jones and Parks [209] have made
an interesting comparative study of the resolution prop-
erties of the Wigner distribution, spectrogram, and
smoothed Wigner distribution. They used a signal com-
posed of two Gaussian components with different time and
frequency centers. They showed that for this case the best
resolution (defined by the ability of the distribution to sep-
arate the two centers) was obtained by the spectrogram with
an optimally matched window.

Bilinear Distributions: The approach discussed in Section
I11-D was extended in O’Connell and Wigner [210], where
they considered the question of uniqueness in a distri-
bution.

Local Second Moment: It was mentioned in the text that
the second local moment of frequency corresponds to the
local kinetic energy in quantum mechanics and that dif-
ferent expressions have been considered. The unified
approach where previous expressions are special cases was
presented in [211], and the references to previously known
expressions are given therein.

Applications: Forrester [212] has applied the Wigner dis-
tribution to the study of vibrations of helicopter compo-
nents with the aim of detecting developing failure of
machine parts, in particular gear failure. By examining the
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vibrations of gears with and without faults he has shown
that the Wigner distribution is an excellent discriminator
and can be used to detect both the type and the extent of
faults.

White and Boashash [213] developed a method for esti-
mating the Wigner distribution for a nonstationary random
process. They use a recursive procedure for the specifi-
cation of estimators having desired characteristics in the
particular regions of the time-frequency plane.
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